	echnische Berechnung: Rohrleitun	gselemente									
	Aufgabenstellung									Rohr	2017
2	peltungsbereich, Literatur DIN EN13480-3:2014 / Pkt. 10.3.2; Regelwert AD2000 S1 / 2004										
3	10.3.2 Vereinfachte Auslegung für Wechseldruckbeanspruchung										
4	dieses Verfahren beruht ausschließlich auf Druckschwankungen										
5	Bedingung: nicht zulässig für zeitabhängige Festigkeit. Unrundheit von Rohren, Rohrbögen sollte1,5 % sein. Lieferanten Zertifkat										
6	/ersagungswahrscheinlichkeit bei hoher Temperatur, konstruktive Fertigungsfehler, techn. Ausführung der Schweißung, Korrosion										
7	lax. Berechnungsdruck = Betriebsdruck		P _{max, statisch} > 0		2		20,0),0 bar			
8	ruckschwankungsbreite = 2 x Amplitude		ρ^- ρ [∨]		max → 15,) bar	0,0 bar		← min	
9	Zulässig für Wechselbeanspruchu	ing	[p^-	$p^{\vee}] \leq 1,1\gamma$	p _{max}	15,0) bar	<	22,0 bar	·	$\sqrt{}$
10	Temperatur innerhalb eines Lastzyklus	Endung 0 / 5	t [^] max ≥ 20	t_{mi}^{\prime}	_{in} ≥ 0	1	50	2	20	$\sqrt{}$	\checkmark
11	cherheitsbeiwert S ≥ 1,5 (norm				1,50					√	
12	Ausgewählte Konstruktion	onsformen	sieh	ne EN1348	0-3: 2012	/ Tabelle	/ S.115				
13									::0 EL /	A C1-	.:0 FI
14	1.1	1	2.2	2.5		\sqrt{l}	$\widetilde{\mathcal{O}}_0$	_	weiß. FL /	Autschwe	l
15	1.2					1.	14	3,	_ / / ii		$-D_0$
16	1.3	.3 1	724		\sim	~		3. 2			3.3
17	1.4										_
18 19			D_0	Nachwei	s erfolgt	mit Date	en der zu	gehörend	den stat. I	3erechn	ung
20	Bauteile im Rohrbau nach DIN EN Tabelle 10.3 und AD 2000	I13480-3 /	INFO	Datei	1.) Roh		rschale, Ko		, gewölbte en	r Boden,	
21	Bauformen, zugehörende Schweißverbindungen Datei				1.3) Rundnaht Wanddicke konstant, einseitig ge					schweißt	\checkmark
22	Stahlsorte der statischen Berechnung Datei				ohne Gegennaht Feritischert Stahl, unlegiert / niedriglegiert					t	
23	-					Kerbwirkungs-Klasse Spannungsfaktor				η	
24	Kennwerte, Bauformen nach Tab.10.3.2- 4				·			er Wert zul	ässig		
25	nach Tab. 10.3.2 .4: Klasse & Sp	oannungsfakto	or <i>Ri</i>	ichtwerte		K2			1,3		
	nach Tab. 10.3.2 .4: Klasse & Sp Festgelegt: Richtwert oder ande	_		ichtwerte Datei		K2			1,3 1,5		$\sqrt{}$
	Festgelegt: Richtwert oder ande	_		Datei	ıng, siehe	K2	1.) bis 3.)	sind in de	1,5	en zu übe	√ ernehme
26	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ve	ere Parameter r zugehörende erbindungen:		<i>Datei</i> n Berechnu		K2		Datei	1,5		√ ernehme
26 27 28	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Vernacht 2.) Einbaustutzen 3.) Flans	ere Parameter r zugehörende erbindungen: chverbindung	en statischer	Datei n Berechnu Datei		K2 Zeile 20 219,1 mr		Datei e _{ord}	1,5 n Folgezeil 2,9 r	nm	√ ernehme
26272829	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Vernehmer 2.) Einbaustutzen 3.) Flans Korrosionszuschlag C_0 + Minusto	ere Parameter r zugehörende erbindungen: chverbindung	1.)D ₀	Datei n Berechnu Datei ≥ 0		K2 Zeile 20 219,1 mr 1,0 mm		Datei	1,5 n Folgezeil	nm	√ ernehma
26 27 28 29 30	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Vernehmer 2.) Einbaustutzen 3.) Flans Korrosionszuschlag Co + Minusto Nahtwertigkeit der Längsnaht	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1	1.)D ₀ C ₀ Z ≤	Datei Datei Datei ≥ 0 ≤ 1,0		K2 Zeile 20 219,1 mr 1,0 mm 1,00		$\begin{array}{c} \textit{Datei} \\ \textit{e}_{ \text{ord}} \\ \textit{C}_{ 1} \geq 0 \end{array}$	1,5 n Folgezeil 2,9 r	nm nm	1
26 27 28 29 30	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Vernehmer 2.) Einbaustutzen 3.) Flans Korrosionszuschlag C_0 + Minusto	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1	1.)D ₀	Datei Datei Datei ≥ 0 ≤ 1,0		K2 Zeile 20 219,1 mr 1,0 mm		$\begin{array}{c} \textit{Datei} \\ \textit{e}_{ \text{ord}} \\ \textit{C}_{ 1} \geq 0 \end{array}$	1,5 n Folgezeil 2,9 r	nm nm	√ ernehma
26 27 28 29 30 31	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Vernehmer 2.) Einbaustutzen 3.) Flans Korrosionszuschlag Co + Minusto Nahtwertigkeit der Längsnaht	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1	1.) _{D₀} C ₀ Z ≤	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000		K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000	n	Datei e_{ord} $C_1 \ge 0$ betrachte	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteils	mm mm stelle	√
26 27 28 29 30 31 32	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ver Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag C 0 + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1 es Systems	en statischer $ \begin{array}{c} 1.) D_0 \\ C_0 \\ Z \le N \ge \end{array} $ druck und die	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun	gsspannu	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000	n D°C ermittel	Datei e_{ord} $C_1 \ge 0$ betrachte	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteils	mm stelle	√ des
26 27 28 29 30 31 32 33	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ve Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag C_0 + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bautei Einzelteils = konstr. Bauteils	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1 es Systems List der Ersatze systems, ergib druck volle	en statischer $ \begin{array}{c} 1.) D_0 \\ C_0 \\ Z \le N \ge \end{array} $ druck und die	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun	gsspannu wert der z	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000	n <u>0°C</u> ermittel Lastspielz	Datei e_{ord} $C_1 \ge 0$ betrachte	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteils	mm stelle spielzahl on Bauteils	√ des
26 27 28 29 30 31 32 33 34	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ve Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag C_0 + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bautei Einzelteils = konstr. Bauteils	ere Parameter r zugehörende erbindungen: chverbindung leranz C_1 es Systems List der Ersatzo systems, ergib druck volle nung $f_{20^{\circ}}$	en statischer 1.) D ₀ C ₀ Z ≤ N ≥ druck und die t sich aus de	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv P r	gsspannu wert der z	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000 ng für 20 ulässigen	n <u>0°C</u> ermittel Lastspielz	Datei e ord C 1 ≥ 0 betrachte tt. Die zulä	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteil: ssige Lasts etrachteter	mm stelle spielzahl on Bauteils	des
26 27 28 29 30 31 32 33 34 35	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ver Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag Co + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bautei Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspann	ere Parameter r zugehörende erbindungen: chverbindung leranz C_1 es Systems List der Ersatzo systems, ergib druck volle nung $f_{20^{\circ}}$	en statischer 1.) D ₀ C ₀ Z ≤ N ≥ druck und die t sich aus de	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv P r	gsspannu wert der z	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba	n <u>0°C</u> ermittel Lastspielz	Datei e_{ord} $C_1 \ge 0$ betrachte tt. Die zulät cahl aller b $f_{\text{zul } 20^{\circ}}$	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteil: ssige Lasts etrachteter	mm stelle spielzahl on Bauteils N/mm²	des
26 27 28 29 30 31 32 33 34 35 36 37	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ver Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag Co + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bautei Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspann Berechnung der zuläss Beiwerte	ere Parameter r zugehörende erbindungen: chverbindung leranz C_1 es Systems I ist der Ersatzo systems, ergib druck volle nung f_{20° sigen Lasi	1.) D ₀ C ₀ Z ≤ N ≥ druck und die t sich aus de	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv P r	gsspannu wert der z	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba	n <u>)°C</u> ermittel Lastspielz	Datei e_{ord} $C_1 \ge 0$ betrachte tt. Die zulä zahl aller b $f_{zul \ 20^{\circ}}$	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteils ssige Lasts etrachteter 180,00	mm stelle spielzahl on Bauteils N/mm²	des
26 27 28 29 30 31 32 33 34 35 36 37	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ve Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag C ₀ + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bautei Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspanr Berechnung der zuläss Beiwerte Wanddicken-Korrekturfaktor für m	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1 es Systems I ist der Ersatze systems, ergib druck volle nung f 20° sigen Lasi aßgebende Te	1.) D ₀ C ₀ Z ≤ N ≥ druck und die t sich aus de INFO twechse	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv P r	gsspannu wert der zi	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba 3.2-4) 0,992	n)°C ermittel Lastspielz F t* (10.3 Austenit	Datei e_{ord} $C_1 \ge 0$ betrachte tt. Die zulätahl aller b $f_{zul \ 20^{\circ}}$ 3.2-5) 0,000	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteils ssige Lasts etrachteter 180,00	mm stelle spielzahl on Bauteils N/mm² e _{ord}] ^{0,25} 1,000	des tellen
26 27 28 29 30 31 32 33 34 35 36 37	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ver Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag Co + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bautei Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspann Berechnung der zuläss Beiwerte	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1 es Systems I ist der Ersatze systems, ergib druck volle nung f 20° sigen Lasi aßgebende Te	1.) D ₀ C ₀ Z ≤ N ≥ druck und die t sich aus de	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv P r	gsspannu wert der z	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba	n O°C ermittel Lastspielz Ar	Datei e_{ord} $C_1 \ge 0$ betrachte tt. Die zulätahl aller b $f_{zul \ 20^{\circ}}$ 3.2-5) 0,000	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteils ssige Lasts etrachteter 180,00	mm stelle spielzahl (n Bauteils N/mm²	√ des tellen √
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ve Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag C ₀ + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bautei Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspanr Berechnung der zuläss Beiwerte Wanddicken-Korrekturfaktor für m	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1 es Systems I ist der Ersatze systems, ergib druck volle nung f 20° sigen Lasi aßgebende Te t* =	en statischer 1.) D_0 C_0 $Z \le N \ge 1$ druck und diet sich aus de INFO twechse emperatur $0.75 \cdot t^+ + 0$	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv P r	gsspannu wert der zi	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba 3.2-4) 0,992	$\frac{0^{\circ}\text{C}}{\text{C}}$ ermittel Lastspielz F _{t*} (10.3 Austenit wenn $t^{*} \le$	Datei e_{ord} $C_1 \ge 0$ betrachtett. Die zulätzahl aller betrachtett. Die zulätzahl aller betrachtett. Die zulätzahl aller betrachtett. Die zulätzahl aller betrachtett. Die zulätzen betrachtet. Die zulät	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteils ssige Lasts etrachteter 180,00	mm stelle spielzahl on Bauteils N/mm² e _{ord}] ^{0,25} 1,000 0,992	des tellen
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ver Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag Co + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bauteit Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspann Berechnung der zuläss Beiwerte Wanddicken-Korrekturfaktor für material Temp. innerhalb eines Lastzyklus	ere Parameter r zugehörende erbindungen: chverbindung leranz C_1 es Systems I ist der Ersatze systems, ergib druck volle nung f_{20° sigen Last aßgebende Te t^* =	en statischer 1.) D_0 C_0 $Z \le N \ge N$ druck und die t sich aus de INFO twechse emperatur $0.75 \cdot t^{\wedge} + C$ Info	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv Pr 1,0 2,25·t 1,0 2,25·t	gsspannu wert der z F_{t^*} (10. Ferrit $t^* =$	K2 Zeile 20 219,1 mr 1,00 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba 3.2-4) 0,992 118 °	n D°C ermittel Lastspielz Ar F _{t*} (10.3 Austenit wenn t*≤	Datei e ord C 1 ≥ 0 betrachte tt. Die zulä cahl aller b $f_{zul \ 20^{\circ}}$ 3.2-5) 0,000 ≤ 100° →	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteil: ssige Lasts etrachteter 180,00 $F_D = [25/6]$ $F_D = F_{t^*}$	mm stelle spielzahl (n Bauteils N/mm² e _{ord}] ^{0,25} 1,000 0,992 № 2 x 10 ⁶	des tellen
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ve Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag C ₀ + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bautei Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspanr Berechnung der zuläss Beiwerte Wanddicken-Korrekturfaktor für m Temp. innerhalb eines Lastzyklus Maßgebliche Dauerfestigkeitswerte	ere Parameter r zugehörende erbindungen: chverbindung leranz C_1 es Systems I ist der Ersatze systems, ergib druck volle nung f_{20° sigen Last aßgebende Te t^* =	en statischer 1.) D_0 C_0 $Z \le N \ge 1$ druck und die t sich aus de INFO twechse emperatur $0.75 \cdot t^{\wedge} + 0$ Info	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv Pr 1000 2.σaD	gsspannuwert der z F_{t^*} (10. Ferrit $t^* = 50,0$	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba 3.2-4) 0,992 118 °	n D°C ermittel Lastspielz Ar Ft* (10.3 Austenit wenn t* ≤ gilt für ein zulässig in	Datei e ord C 1 ≥ 0 betrachte tt. Die zulä cahl aller b $f_{zul \ 20^{\circ}}$ 3.2-5) 0,000 ≤ 100° →	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteil: ssige Lasts etrachteter 180,00 $F_D = [25/r]$ $F_D = F_{t^*}$	mm stelle spielzahl (n Bauteils N/mm² e _{ord}] ^{0,25} 1,000 0,992 № 2 x 10 ⁶	des tellen
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ver Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag Co + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bauteit Einzelteils = konstr. Bauteils Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspanner Berechnung der zulässige Lastzyklus Maßgebliche Dauerfestigkeitswert Maßgebl. pseudoelastische Spannerchnungskonstante Zulässige Lastspielzahl für das gesten der Maßgeblagen von der Stattspielzahl für das gesten der Stattspielzahl für das gestellt von der Stattspielzahl für das gesten der Stattspielzahl für das gestellt von der Stattspielzahl für der Stattspielzahl für das gestellt von der Stattspielzahl für der Stattspielzahl für der Stattspielzahl für der Stattspielzahl für der Stattsp	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1 es Systems I ist der Ersatzce systems, ergib druck volle nung f 20° sigen Lasi aßgebende Te t* =	en statischer 1.) D_0 C_0 $Z \le N \ge 1$ druck und die t sich aus de INFO twechse emperatur $0.75 \cdot t^{\wedge} + 0$ Info	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv Pr 2·σaD 2·σa* B	gsspannu wert der z F _{t*} (10. Ferrit t* = 50,0 157,1	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba 3.2-4) 0,992 118 ° N/mm² N/mm²	P°C ermittel Lastspielz F t* (10.3 Austenit wenn t* ≤ gilt für ein zulässig in für Schw	Datei e_{ord} $C_1 \ge 0$ betrachtett. Die zulätzahl aller betrachtett. Die zulätzahl aller betrachtett. Die zulätzahl aller betrachtett. Die zulätzahl aller betrachtett. Die zulätzehl zulätzen betrachtett. Die zulätze	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteils ssige Lasts etrachteter 180,00 $F_{D} = [25/r]$ $F_{D} = F_{t^{+}}$ slastzahl N andsbereic	mm stelle spielzahl on Bauteils N/mm² e _{ord}] ^{0,25} 1,000 0,992 N≥ 2 x 10 ⁶ ch 2σ _{aD} 3,0	des tellen
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ve Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag C ₀ + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bautei Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspanr Berechnung der zuläss Beiwerte Wanddicken-Korrekturfaktor für m Temp. innerhalb eines Lastzyklus Maßgebliche Dauerfestigkeitswert Maßgebl. pseudoelastische Spans Berechnungskonstante Zulässige Lastspielzahl für das ge die kleinste Lastspielzahl ist einge	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1 es Systems I ist der Ersatzce systems, ergib druck volle nung f 20° sigen Lasi aßgebende Te t* =	en statischer 1.) D_0 C_0 $Z \le N \ge 1$ druck und die t sich aus de INFO twechse emperatur $0.75 \cdot t^{\wedge} + 0$ Info le	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv Pr 2·σaD 2·σa* B N zul	### (10. Ferrit ## = 50,0	K2 Zeile 20 219,1 mr 1,00 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba 3.2-4) 0,992 118 ° N/mm² N/mm² N/mm²	P°C ermittel Lastspielz F t* (10.3 Austenit wenn t* ≤ gilt für ein zulässig in für Schw	Datei e ord $C_1 \ge 0$ betrachte t. Die zulätahl aller b $f_{zul \ 20^{\circ}}$ 3.2-5) 0,000 ≤ 100° → the Betriebs m Dauerst teißnähte	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteil: ssige Lasts etrachteter 180,00 F _D = [25// F _D = F _{t*} lastzahl N andsbereic m 64.0	mm stelle spielzahl on Bauteils N/mm² e _{ord}] ^{0,25} 1,000 0,992 № 2 x 10 ⁶ ch 2σ _{aD} 3,0	des tellen
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ver Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag Co + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bauteit Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspann Berechnung der zuläss Beiwerte Wanddicken-Korrekturfaktor für meter Temp. innerhalb eines Lastzyklus Maßgebl. pseudoelastische Spann Berechnungskonstante Zulässige Lastspielzahl für das gedie kleinste Lastspielzahl ist einge Anzahl der Lastspielzahlen	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1 es Systems List der Ersatze systems, ergib druck volle nung f 20° sigen Lasi aßgebende Te t* = thungsamplitud ewählte Bauteit etragen	en statischer 1.) D C C Z S druck und die t sich aus de INFO twechse emperatur 0,75·t^++0 Info de	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv P_{Γ} 2. σ_{aD} 2. σ_{a^*} B N_{zul}	gsspannu wert der zi F _{t*} (10. Ferrit t* = 50,0 157,1 6300,0 64.5	K2 Zeile 20 219,1 mr 1,00 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba 3.2-4) 0,992 118 ° N/mm² N/mm² N/mm² 517 0 ≤	D°C ermittel Lastspielz Ft* (10.3 Austenit wenn t* ≤ gilt für ein zulässig in für Schw min. Last	Datei e_{ord} $C_1 \ge 0$ betrachtett. Die zulätenhlaller betrachtett. Die zulätenhlaller betrachtett. Die zulätenhlaller betrachtet. Die zulätenhlaller betrachtet. Die Betriebs me Dauerstreißnähtettspielzahl	1,5 n Folgezeil 2,9 r 0,4 r - ete Bauteils ssige Lasts etrachteter 180,00 $F_D = [25/r]$ $F_D = F_{t^+}$ slastzahl N andsbereic m 64.0 $\leq 2 \times 10^{-10}$	mm stelle spielzahl on Bauteils N/mm² 1,000 0,992 ≥ 2 x 10 ⁶ ch 2σ _{aD} 3,0 10 6	des tellen
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ve Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag C ₀ + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bautei Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspanr Berechnung der zuläss Beiwerte Wanddicken-Korrekturfaktor für m Temp. innerhalb eines Lastzyklus Maßgebliche Dauerfestigkeitswert Maßgebl. pseudoelastische Spans Berechnungskonstante Zulässige Lastspielzahl für das ge die kleinste Lastspielzahl ist einge	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1 es Systems I ist der Ersatze systems, ergib druck volle nung f 20° sigen Lasi aßgebende Te t* = thungsamplitud ewählte Bauteil etragen	en statischer 1.) D ₀ C ₀ Z ≤ N ≥ druck und diet sich aus de INFO twechse emperatur 0,75·t^++0 Info le In,	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv Pr 2.σaD 2.σa* B N zul N all ile 41 und 4	gsspannu wert der z F _{t*} (10. Ferrit t* = 50,0 157,1 6300,0 64.9 100 14, die Za	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba 3.2-4) 0,992 118 ° N/mm² N/mm² N/mm² N/mm² 517 0 ≤ hl der Dru	D°C ermittel Lastspielz Ar Ft* (10.3 Austenit wenn t*≤ gilt für ein zulässig in für Schw min. Last 64.0 uckschwan	Datei e ord $C_1 \ge 0$ betrachte it. Die zulä cahl aller b $f_{zul \ 20^\circ}$ 3.2-5) 0,000 ≤ 100° → the Betriebs m Dauerst reißnähte tspielzahl 000 kungen od	1,5 n Folgezeil 2,9 r 0,4 r 0,4 r - ete Bauteils ssige Lasts etrachteter 180,00 $F_D = [25/4]$ $F_D = F_{t^*}$ slastzahl N andsbereid m 64.0 $\leq 2 \times \text{der der Spa}$	mm stelle spielzahl on Bauteils N/mm² eord] ^{0,25} 1,000 0,992 N≥ 2 x 10 ⁶ ch 2σ _{aD} 3,0 100 10 6 unnungen	des tellen
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Festgelegt: Richtwert oder ande Werte de Maße spezifiziert, geschweißte Ver Rohr 2.) Einbaustutzen 3.) Flans Korrosionszuschlag Co + Minusto Nahtwertigkeit der Längsnaht Angenommene Lastspielzahl de Für ein konstruktives Bauteit Einzelteils = konstr. Bauteils Einzelteils = konstr. Bauteils Ersatzdruck: zul. Berechnungs Ausnutzung der Auslegungsspann Berechnung der zuläss Beiwerte Wanddicken-Korrekturfaktor für meter Temp. innerhalb eines Lastzyklus Maßgebliche Dauerfestigkeitswert Maßgebl. pseudoelastische Spans Berechnungskonstante Zulässige Lastspielzahl für das gedie kleinste Lastspielzahl ist einge Anzahl der Lastspielzahlen Überschreitet eines der	ere Parameter r zugehörende erbindungen: chverbindung leranz C 1 es Systems I ist der Ersatze systems, ergib druck volle nung f 20° sigen Lasi aßgebende Te t* = thungsamplitud ewählte Bauteil etragen	en statischer 1.) D ₀ C ₀ Z ≤ N ≥ druck und diet sich aus de INFO twechse emperatur 0,75·t^++0 Info le In,	Datei n Berechnu Datei ≥ 0 ≤ 1,0 ≥ 1000 e Auslegun em Kleinstv Pr 2.σaD 2.σa* B N zul N all ile 41 und 4	gsspannu wert der z F _{t*} (10. Ferrit t* = 50,0 157,1 6300,0 64.9 100 14, die Za	K2 Zeile 20 219,1 mr 1,0 mm 1,00 55.000 ng für 20 ulässigen 26,00 ba 3.2-4) 0,992 118 ° N/mm² N/mm² N/mm² N/mm² 517 0 ≤ hl der Dru	D°C ermittel Lastspielz Ar Ft* (10.3 Austenit wenn t*≤ gilt für ein zulässig in für Schw min. Last 64.0 uckschwan	Datei e ord $C_1 \ge 0$ betrachte it. Die zulä cahl aller b $f_{zul \ 20^\circ}$ 3.2-5) 0,000 ≤ 100° → the Betriebs m Dauerst reißnähte tspielzahl 000 kungen od	1,5 n Folgezeil 2,9 r 0,4 r 0,4 r - ete Bauteils ssige Lasts etrachteter 180,00 $F_D = [25/4]$ $F_D = F_{t^*}$ slastzahl N andsbereid m 64.0 $\leq 2 \times \text{der der Spa}$	mm stelle spielzahl on Bauteils N/mm² eord] ^{0,25} 1,000 0,992 N≥ 2 x 10 ⁶ ch 2σ _{aD} 3,0 100 10 6 unnungen	des tellen