Table of Contents

Ю	word	5
1	What Is an Electrical Connector?	17
2	Connector Components	19
3	Different Termination Techniques 3.1 Soldering Into 3.2 Soldering Through 3.3 Soldering on Top 3.4 Press-Fit Technology 3.5 Soldering on Wires 3.6 Welding on Wires 3.7 Screwing on Wires 3.8 Crimping on Wires 3.9 IDC Technology	211 211 212 222 222 233 233
4	nsulator Materials 1.1 PBT 1.2 PA 1.3 LCP 1.4 PPS 1.5 PC 1.6 Production of Connector Housings 1.7 Reel-to-Reel Processing 1.8 Crematorium Effects	25 30 31 31 31 31 31 31
5	Contact Materials 5.1 Copper 5.2 Brass 5.3 Spring Alloys 5.4 Relaxation of Spring Forces 5.5 Contacts	33 34 34 34 34 36
6	Contact Point	37
7	Various Contact Surfaces V.1 Nickel V.2 Gold V.3 Palladium V.4 Silver V.5 Tin V.6 Multilayer V.7 Nickel Barrier Layer	39 40 40 40 40 41 41

	7.8	Contacts Made from Pre-plated Strip Materials	41
	7.9	Contact Between Two Different Contact Surfaces	42
8	Conta	act Resistance	49
	8.1	Contact Resistance and Temperature	53
	8.2	Contact Resistance and Corrosion	54
	8.3	Contact Resistance and Fretting Corrosion	54
	8.4	Contact Resistance and Mating Cycles	55
	8.5	Films on the Contact Surfaces	56
	8.6	Low Contact Resistance Is Important	56
9	Shield	ding Provisions	59
_	9.1	Electromagnetic Compatibility	60
	9.2	The EMC Shielding Factor	62
	9.3	Pseudo-Coaxial Pin Assignment to Optimize Signal Integrity	64
10	Locki	ng Electrical Connectors	69
11	Housi	ng and Mechanics	73
•	11.1	Position Coding	73
	11.2	Pre-Alignment	74
	11.3	Intermateability	75
	11.4	Inverse Plug-In Systems	76
	11.5	Soft and Hard Metric Backplane Systems	76
	11.6	Waterproof Versions	77
		Explosion-Proof Connectors	79
	11.7	explosion-rioor Connectors	79
12	Why	Are New Connectors Being Developed?	81
13	Conn	ectors in Power Electronics	83
	13.1	Example of Cooling Via Connected Cables	84
	13.2	Example of Cooling Via Copper in the Printed Circuit Board	84
	13.3	Thermal Simulation for the Extreme Case	85
	13.4	Hot Plugging in Power Electronics	86
	13.5	Current Capability at the Borderline	87
14		ectors for High Data Rates	91
	14.1	Why Are These Signals Transmitted as a Differential Pair?	91
	14.2	How Do You Transmit Digital Signals?	91
	14.3	What Must Be Observed for the Transmission Paths?	94
	14.4	Why Are Impedance Discontinuities Critical?	94
	14.5	Crosstalk at High Data Rates	96
	14.6	Signal-to-Noise Ratio—Why Is Crosstalk So Critical?	97
	14.7	Simulation in the Connector Industry	99
	14.8	Signal Transmission at High Data Rates	101
	14.9	S-parameters	105
		S-parameters in Unbalanced Operation (Single-Ended)	105

	14.11	S-parameters in Mixed Mode	106
		Verification of S-parameters After Simulation	
		What Are Eye Diagrams?	
		Influence of the Printed Circuit Board	
15	Proce	ssing Connectors in the System Assembly	115
	15.1	Soldering Processes for Different PCB Soldering Techniques	115
	15.2	Placing Connectors on Printed Circuit Boards Using Press-Fit Technology	116
	15.3	Connecting Wires, Strands, and Cables to Electrical Connectors	117
16		ector Selection	
	16.1	Use Cases	
		16.1.1 Input/Output Electrical Connector	
		16.1.2 Printed Circuit Board Connectors	119
		16.1.3 Board-to-Board Connectors	120
		16.1.4 Backplane Connectors	120
		16.1.5 Mezzanine Connectors	121
		16.1.6 Other Electrical Connectors	122
	16.2	Checklist	123
Ε¥	nert	Contributions	
	рст	Contributions	
1		fying and Evaluating Connectors	129
	Dipl	Ing. (FH) Tilman Heinisch / DrIng. Ute Hörmann	
	1.1	Requirements for Electrical Connectors	
	1.2	Requirements for the Test Laboratory	129
	1.3	Norms, Standards, and Test Programs	130
	1.4	Assessment Criteria and Test Methods	131
		1.4.1 Contact Resistance	131
		1.4.2 Insulation Resistance and Dielectric Strength	131
		1.4.3 Climatic Tests	132
		1.4.4 Mechanical Tests	132
		1.4.5 Current Carrying Capacity/Derating	133
	1.5	Fault and Damage Analysis on Connector Systems	134
		1.5.1 Resistance-Increasing Layers	136
		1.5.2 Whisker	139
		1.5.3 Production Faults in Crimp Connectors and Connector Systems	140
2		-Fit Technology	143
	-	WirtIng. Sandra Gast	4.4.4
	2.1	Repairability	
	2.2	PCB Surface Plating	
	2.3	Hole Structure	
	2.4	Surface Coating of the Contacts and the Press-Fit Zone	
	2.5	Printed Circuit Board Design: Minimum Spacing and Track Layout	
	2.6	Press-Fit Process	
	2.7	Presses	147

	2.8	Reliability of the Press-Fit Technology	
	2.9	Application Examples	
		2.9.1 From High Speed to High Current	
		2.9.2 Application Examples for Shock and Vibration Resistance	149
3		kers in Press-Fit Technology	151
		rika Crandall	
	3.1	Whisker	
	3.2	History of the Tin Whiskers	
	3.3	Whisker Growth Theory and Mechanisms	
	3.4	Whisker Growth in Press-Fit Connections	
	3.5	Whisker Risk Assessment	
	3.6	Standards/Norms	161
4		aces for Press-Fit Pins	167
		SABELL BURESCH	160
	4.1	Tin-Based Coatings	
		4.1.1 Sn With/Without Ni Underlayer	
	4.2	4.1.2 Tin-Silver Coatings	
	4.2	Tin-Free Press-Fit Technology	
		4.2.2 Indium Coating	
		4.2.3 Bismuth Coatings	
	4.3	Summary	
5	Comi	ponent Design for Automated Wire Harness Production	101
3		El-Ing. (FH) Christian Infanger	101
	5.1	Manual Production Reaches Its Limits	181
	5.2	Consider Automation in the Early Project Phases	
	5.3	Current Test Standards Are No Longer Up to Date	
	5.4	Chamfers and Curves in the Insertion Area of Terminals	
	5.5	Full Process Specification as Part of Data Sheets	
	5.6	Provide Areas for Optical Measurement	
	5.7	Chamber Entrance Must Be Freely Accessible	
	5.8	Single-Wire Seals with Collars Increase Process Reliability	
	5.9	Construction of Chamber Inlet and Transitions in the Connector	
	5.10	Pay Special Attention to Connectors with Family Seal	187
	5.11	Small Adjustments, Big Impact	
6	Base	Materials for Connector Contacts	191
	Dr. Is	SABELL BURESCH	
	6.1	Why Copper Alloys?	191
	6.2	Application-Specific Properties (Focus on Strip Materials)	193
		6.2.1 Conductivity	194
		6.2.2 Strength	
		6.2.3 Bendability	
		6.2.4 Stress Relaxation	
		6.2.5 Flexural Fatigue Strength	199

		6.2.6 Spring Bending Limit	200
		6.2.7 Costs	201
	6.3	Copper Materials for Stamped Connector Contacts	201
		6.3.1 Pure Copper Materials	201
		6.3.2 Solid-Solution-Hardened Copper Materials	202
		6.3.3 Precipitation-Hardened Copper Materials	
	6.4	Copper Materials for Machined Contacts	
7		act Physics	219
		ig. Michael Leidner / DrIng. Helge Schmidt	
	7.1	Introduction	
	7.2	The Constriction Resistance According to HOLM	
	7.3	Real versus Apparent Contact Area	
	7.4	Morphology of the Contact Point and Electrical Conduction Processes	225
		7.4.1 Areas of Pure Metallic Contact	226
		7.4.2 Areas of Pure Quasi-Metallic Contact	227
		7.4.3 Insulating Contact Surface	227
		7.4.4 Fritting and Dry-Circuit Measurement Conditions	228
	7.5	Simulation of the Real Contact Surface	
		7.5.1 The Pure Hertzian Contact	231
		7.5.2 Influence of the Layer Sequence	232
		7.5.3 Influence of the Surface Topography	
		7.5.4 Measurement and Simulation of the Constriction Resistance	
		7.5.5 Current Density Distribution within the Contact Point	
		7.5.6 Internal Mechanical Stresses/Wear Behavior	
	7.6	Wear and Tear	
		7.6.1 Incipient Wear in the Fixed Contact Point	
		7.6.2 Tribological Wear and Fretting Corrosion	
		7.0.2 Theological Wear and Tretaing Corresion	
3	Surfa	ces for Connector Contacts	243
	DrIn	ng. Helge Schmidt / Dr. Isabell Buresch	
	8.1	Requirements for the Surfaces for Connectors	
	8.2	Contact Materials for Connectors	244
		8.2.1 Gold (Au)	244
		8.2.2 Platinum (Pt) and Rhodium (Rh)	244
		8.2.3 Palladium (Pd)	245
		8.2.4 Silver (Ag)	245
		8.2.5 Tin (Sn)	245
		8.2.6 Nickel (Ni)	245
	8.3	Precious Metal Surface Coatings	246
		8.3.1 Hard Gold Coatings for Connectors	246
		8.3.2 Palladium or Palladium-Nickel with Gold Flash	
		8.3.3 Nickel-Phosphorus-Gold Flash	
		8.3.4 Silver	
	8.4	Surface Coatings Using Non-noble Metals	
		8.4.1 Tin-based Coatings	
		8.4.2 Functional Properties of Surfaces	
		8 4 3 Performance Ontimization of Tin Surfaces for Connector Contacts	

		8.4.4	Outlook for Tin-based Coatings	282
		8.4.5	Nickel Coatings	284
	8.5	Summ	nary and Recommendations	285
		8.5.1	Overview	285
		8.5.2	Mixing/Cross-Compatibility of Contact Surfaces	285
9			Performance Coatings for Connector Systems—It Doesn't	
			ve to Be "Noble"	289
			er / Thomas Wielsch / Marcel Mainka	
	9.1		uction	
	9.2		mental	
			Sample Preparation	
			Tribological Investigations	
	9.3		s and Discussion	
			Layer Structure of the ML System	
			Macro–Friction	
			Micro-Friction (Fretting)	
			Application Tests	
	9.4	Outlo	ok	309
10			cal Challenges in the Use of Coaxial Connectors at High Data	
				311
		_	ROSENBERGER	244
			uction	
	10.2		of the Art Today	
			BNC/TNC Series	
			2 Series N	
			3 Series QN	
			Series Snap N	
			Series 7/16	313
		10.2.6	Subminiature Coaxial Connector Series for Different Areas of Application	314
		10.2.7	Coaxial Printed Circuit Board Connectors	
	10.3		Coaxial Connectors for Mobile Radio Applications	
	10.4		al Connectors Board-to-Board "Blind Mate"	
			SMP Series	
			2 Supplements Mini-SMP/WSMP/Z-SMP Series	
			Tolerance Compensation with Board-to-Board Connectors	
	10.5		ated Solutions for Coaxial Connectors in the Automobile FAKRA	
		_	FAKRA Connector System	
			P. HFM [®] —High-Speed FAKRA Connectors and FAKRA Mini	
	10.6		Connection for Transition from Fiber Optic to Electrical Cable	
	10.7		nary: The Limits of Coaxial Technology	
11	USB-	C—A P	Plug Connection, Not Just for USB Applications!	323
		DREYER		
			l Applications	
	11.2	Image	versus Facts	325

	11.3	Low Cost: No Thanks!	325
	11.4	Mechanical Performance	326
	11.5	Electromagnetic Compatibility	327
	11.6	SuperSpeed USB 20 GBit/s	327
		11.6.1 Evaluation of Our Sample Measurement	
		11.6.2 Simulation Is Important in Practice—But Does Not Replace	
		Measurement	331
	11.7	The Shielding of the Connector	
		Considerations When Selecting the Plug	
		The Further Evolution of the USB: "USB4"	
	11.5	The Further Evolution of the GSS. GSS T	55
12	M12	Push-Pull Connector	335
	Dipl	Ing. (FH) Manuela Gutmann	
	12.1	Introduction	335
	12.2	Metric M12 Circular Connectors	335
	12.3	The Path to the M12 Push-Pull	335
	12.4	Functionality of the Push-Pull System in Accordance with IEC 61076-2-012	337
		12.4.1 Advantages of the System	
		12.4.2 Robustness and Torsion Resistance	
		12.4.3 How Does the Plug Seal?	338
		12.4.4 Device Integration	
	12.5	Push-Pull System According to IEC 61076-2-010	
		12.5.1 Outer Push-Pull	
		12.5.2 Inner Push-Pull	
	12 6	Conclusion and Outlook	
13	Conn	ectors for Single Pair Ethernet	343
		Ing. Matthias Fritsche	
	13.1	The Current IEEE802.3 Standards for SPE	343
		13.1.1 IEC 63171—Standardization of Single Pair Ethernet Connection	
		Technology	344
		13.1.2 Comparison of the Different Connectors According to IEC 63171-x	345
		13.1.3 Comparison of MPE and SPE	346
		13.1.4 The Connection Technology for SPE	346
	13.2	Interpretation of the Electrical Characteristic Values	347
		13.2.1 Nominal Voltage	347
		13.2.2 Insulation Voltage	347
		13.2.3 Rated Current	
		13.2.4 HF Transmission Parameters	347
	13.3	Technical Design of the SPE Connection Technology in Accordance with IEC	
		63171-6	348
	13.4	SPE Connection Technology According to IEC 63171-1	
	13.5	SPE Connection Technology According to IEC 63171-4	
	13.6	SPE Connection Technology in Accordance with IEC 63171-2 and -5	
	13.7	SPE Connection Technology According to IEC 63171-7	
		SPE Connection Technology for Automotive Applications	352

	Single Pair Ethernet Replace the RJ45?	353
	LÖDIGE / KLAUS LEUCHS / RALF TILLMANNS / SIMON SEEREINER	
14.1	Ethernet Networks in Buildings	353
	Ethernet Moves into Industrial Applications	
14.3	Ethernet Reaches the Field Level	35!
14.4	The Automotive Industry as a Driver for SPE	35!
14.5	Different Fields of Application for SPE	. 356
14.6	Advantages of SPE in the Industry	35
14.7	Connectors for SPE	35
14.8	Basic Electrical Properties of SPE Connectors	36
	14.8.1 Impedance	. 36
	14.8.2 Dielectric Strength	. 36
	14.8.3 Transmission Properties	. 36
14.9	Comparison of RJ45 and SPE Connectors	
	The Future of Communication Interfaces	
	nectors for New Vehicle Architectures and Vehicle Electrical Systems	. 36
	-Ing. (FH) UWE HAUCK	
15.1	New Vehicle Architectures and Changes in the Vehicle Electrical System	
	Requirements for HV Connection Systems	
15.3	Operational Safety	
	15.3.1 Electrical Safety	
	15.3.2 Mechanical Safety	
	15.3.3 Functional Safety	. 37
15.4	Applications	37
	15.4.1 HV On-Board Electrical System	. 37
	15.4.2 Battery	. 37
	15.4.3 Charging Technology	. 38
15.5	Outlook	38
	ity Assurance of the Tightness of Connectors in the Production Process	38
	OACHIM LAPSIEN	
16.1	Electrical Connector	
	16.1.1 Diverse Areas of Application and Extreme Demands on Connectors	
	16.1.2 Leakages in Electrical Connectors	
16.2	Leak Test in the Laboratory	
	16.2.1 Laboratory Tests—Type Testing and IP Protection Classes	
	16.2.2 Advantages and Disadvantages of Type Testing in the Laboratory	. 39
16.3	Leak Testing in the Production Process	39
	16.3.1 Routine Tests	. 39
	16.3.2 Relationship Between Tightness, Leakage Rate, and Hole Size	. 39
	16.3.3 Selection of the Test Medium	. 39
	16.3.4 Leak Test with Compressed Air as Test Medium	
	16.3.5 Advantages and Disadvantages of Routine Tests During Production	
16.4	Leak Test of Connectors	
	16.4.1 Adaptation of Electrical Connectors	
	16.4.2 Condition of the Connector and Suitable Test Methods	

		Optimizations	
	16.6	Type Testing versus Routine Testing	401
17	Devel	opments for Special Applications	403
		p. DiplIng. (FH) Bernd Sporer	.05
	17.1	Housing for the USBEXICNC	406
	17.2	"ic" WV3XIC Module	407
	17.3	Sealing of the USBEXICNC to Fulfill "nC" Requirements	408
12	Thern	nal Characteristics of an Electrical Connector	<i>4</i> 11
		ng. (FH) Tobias Best	7
19	CAE 9	Simulation as a Supporting Tool in the Development Process for	
		ectors	415
	M.Sc	(TU) ALEXANDER SHALABY	
		Use of CAE Simulation in the Development Process	415
	19.2	CAE Simulation Methods for Connector Development	415
		19.2.1 Field Simulation	416
		19.2.2 Coupling of Physical Domains – "Multi-Physical Simulation"	417
		19.2.3 Simulation of Transmission Paths and Signal Shapes	418
	19.3	Performing a CAE Simulation Using the Example of Electromagnetic Field	
		Simulation of Connectors	420
		19.3.1 Model Preparation (Pre-processing)	420
		19.3.2 Analysis (Solution)	422
		19.3.3 Evaluation of Results (Post-processing)	423
	19.4	Potential of Parametric Simulation in Product Development	425
20	Modu	lar Connectors: Compact and Flexible Interfaces for Production Systems	427
	Неіко		
	20.1	Development of Modular Connectors	
	20.2	Structure of Modular Connector Programs	
	20.3	Modular Connections for Modular Machines	
	20.4	Multiple Options for One Interface	
	20.5	Saving Space with Fiber-Optic Transmission	
	20.6	Simple Connection Technology for Quick Installations	
	20.7	Modular and Smart Connectors for Network Communication	
	20.8	Protect Sensitive Electronics, Improve System Availability	
	20.9	Further Miniaturization Through Individual Modules	431
21		Optic Connection Assemblies for Communication Networks	435
		ETH MaschIng. Aleksandar Opacic	
	21.1	Definition	
	21.2	Structure and Function of Fiber-Optic Connectors: Parameters	
	21.3	Structure and Function of an Adapter	
	21.4	Structure and Function of Fiber-Optic Connections: Insertion Loss Parameters	
	21.5	Maximum Values and Qualities of Fiber-Optic Connections	
	21.6	Connectors and Cables	445

	21.7	Simplex, Duplex, and Multi-fiber Connectors: Areas of Application	446
	21.8	Patch Cables and Pigtails	447
	21.9	Standards	448
22	Conn	ector Selection in the Digital World	449
	Dipl	WirtschIng. ΚΑΙ Νοπέ	
	22.1	Product Information in Text Form	449
		22.1.1 The Classic Product Description	449
		22.1.2 Electronic Catalogs	450
	22.2	Visualized Product Information	450
		22.2.1 Drawings and 3D Models	450
		22.2.2 Graphical Data	451
		22.2.3 Product Photographs	
	22.3	Searching and Finding Product Information	451
		22.3.1 Manufacturer	452
		22.3.2 Distributors	452
		22.3.3 Other Platforms	453
	22.4	The Future	453
23		ess Power Transfer – A Different Type of Connection	455
	-	Ing. Mathias Wechlin	
	23.1	The Electric Toothbrush—The First Wireless Charging System with Mass Distribution	455
		23.1.1 Spot Charging and Continuous Power Transfer Solutions	
		23.1.2 The Basic Technical Approach Is Always Based on Physics,	
		Which Has Been Known for a Long Time	457
	23.2	What Characterizes Inductive Wireless Power Transfer Systems?	
	23.3	Practical Example of Electromobility	460
		23.3.1 Increased User Acceptance, Increased Reach	463
	23.4	Meeting Megatrends with Wireless Power Transfer Solutions	
Clo	sing	words	465
A I-		at and	467
ΑD	brevia	ations	467
CV	s of t	he Authors	471
Bik	oliogra	phy	479
Ad	dition	al Sources	492
GI.	ossarv		<i>1</i> 93
1711	1229LV		493

1 What Is an Electrical Connector?

ROBERT S. MROCZKOWSKI, a globally recognized connector guru, describes the function of an electrical connector in his *Electronic Connector Handbook* [1] as follows:

"An electrical connector is an electromechanical system which provides a separable connection between two subsystems of an electronic device without causing an unacceptable impact on the performance of the device."

What is he trying to tell us?

First of all, we must realize that a connector is rarely an optimal solution to a problem. When using connectors, a compromise must always be made—be it in the mechanical design or for the electrical signal routing.

With this in mind, an attempt is made to design an electrical connection with regard to impedance, frequency characteristics, contact resistances, and service life expectations in such a way that the requirements of the overall system are met from an economic point of view.

As the separation points must also meet physical (mating cycles, shock, and vibration) and chemical (corrosion) requirements, copper-based contact materials (conductivity) such as brass, phosphor bronze, or nickel silver must be provided with surfaces that achieve the lowest possible contact transfer resistance with simultaneous corrosion resistance and abrasion resistance over the service life of the overall system.

These compromises will continue to accompany us in the future. Many users think that a manufacturer will design a connector specifically for their application. Even if the user pays tooling cost, this is only feasible in the rarest cases. The manufacturer will investigate the market to see whether such applications occur globally. And even if they do, they will be reluctant to agree, because the development of a new connector nowadays runs into the millions and, on the other hand, the user will sooner or later demand a second source, whether for reasons of price control or really for reasons of security of supply.

Why are new developments of connectors so expensive? Because the customer demands an optimum product with reproducible quality that can no longer be manufactured by hand but must be produced using camera-monitored punching tools, integrated injection or overmolding tools, and fully automated assembly tools.

It therefore makes sense for the user to focus on existing products. Sometimes it is small things, such as temperature ranges, that prevent the use of existing products. In such cases, the user should definitely talk to the manufacturer, because products are developed for a specified market and this market may have lower requirements than the current application.

In such cases, the manufacturer may give its approval, even if this is not reflected in a revised product specification. A new product specification would also mean a new product qualification, which in turn is very cost-intensive.

TIP

If you are interested in the process of connector qualification and fault patterns, read expert contribution 1 titled "Qualifying and Evaluating Connectors" in this book.

In Brief

An optimal selection of a product for a specific application is important in order to find a cost-effective solution for the existing connector problem. This book is intended to help you with your selection and decision.

2 Connector Components

If we look at an electrical connector in detail (Figure 2.1), the following individual parts must be taken into account:

- Termination technology pin contact
- Insulator pin contact
- Base material pin contact
- Surface pin contact
- Surface socket contact
- Base material socket contact
- Insulator socket contact
- Termination technology socket contact
- Shielding of the electrical connector (- - -)
- Housing and locking mechanism

Figure 2.1 Elements of an electrical connector

First, let's look at the termination technology; we typically distinguish between

- Soldering,
- Welding,
- Screws,
- Press fit,
- Crimping, and
- Insulation displacement connectors.

3 Different Termination Techniques

When soldering, we distinguish between soldering into, soldering through, soldering on top, and soldering on wire.

3.1 Soldering Into

Soldering, especially wave soldering, is used to solder a wired component into a single-layer printed circuit board (PCB), for example. This technology is rarely used today. Exceptions are PCBs that are installed in simple household appliances, hobby tools, or similar.

3.2 Soldering Through

Through-hole soldering is a technique in which the solder paste is applied over a plated-through hole (PTH), into which a wired component is then inserted, and subsequently soldered during the reflow process. This technique is also known as **pin-in-paste** (PiP) or **through-hole reflow** (THR) and requires that the circuit boards have PTHs and the components are reflow-capable, i.e. they can withstand temperatures of +260 °C.

It must also be taken into account that the solder paste applied over the PCB is large enough (often limited by the contact pitch minus 0.2 mm separator in the stencil) to fill the space between the PTH and the component's pin. The calculation must take into account the shrinkage of the solder paste (~50% of the volume) during the reflow process.

Further boundary conditions are a distance of 0.25 mm between the connector housing and the circuit board in the area of the solder paste application (plastic feet as spacer) and a maximum penetration of the connection pins underneath the circuit board of 1 mm. This prevents solder paste from accumulating at the end of the pin, which would then be missing in the soldering area.

Finally, it is appropriate to deliver these components in tape and reel so that they can be assembled fully automatically using pick and place machines.

3.3 Soldering on Top

Soldering, usually referred to as surface-mount technology (SMT), is the state of the art today. SMT has the advantage that conductive tracks can run under the component in multilayer PCBs and that the B-side of the PCB can also be fitted with components.

The PCBs are printed with paste using stencils, and then the components are placed and finally soldered using the reflow process.

The component manufacturer specifies the layout for the solder pads. The size of the paste print is usually defined by in-house guidelines, which also take solder resist, etc., into account.

SMT is limited to component lengths of a maximum of 50 mm because PCBs can inflect during the reflow process, resulting in open solder joints on larger components. If larger than 50 mm components need to be processed, press-fit technology or the PiP/THR process is suitable.

In addition to soldering, connection pins can also contact PCBs using press-fit technology.

3.4 Press-Fit Technology

Press-fit technology has its origins in the 1970s, when assembly systems for telecommunications and military applications were still wired to the backplane using wire-wrap technology. At that time, solid posts were pressed into PCBs with plated through holes (PTHs). It quickly became clear that this technique would put a lot of stress on the PCBs—especially because repair options for any damaged connector pin also had to be taken into account.

Flexible press-fit zones were therefore developed. In the 1990s, more than 20 different designs competed for the PTH with a diameter of 1.05 mm, and each connector manufacturer claimed that their design was the true one.

At that time, the connector pitches were 2.54 mm or 2.50 mm. Due to the ever-increasing packing density, the hole diameters had to be reduced, and today, press-fit technology is mainly offered as a punched eye of a needle (EoN) for hole diameters from 0.31 mm to 1.05 mm. The hole diameters are referred to as finished hole diameters (PTH). In the lead-free age, the originally large hole tolerances are no longer required; chemically tin-plated or Electroless Nickel Gold (ENIG) PCB surfaces are used, and PCB manufacturers know that the finished dimensions of the PTHs must be in the upper range of the tolerance band, because chemically tinned surfaces are rougher than the previous lead-containing hot air leveling (HAL) surfaces and therefore the press-fit process can be critical in the lower diameter tolerance band.

TIP

Expert contribution 2 titled "Press-Fit Technology" in this book provides detailed information on this technology.

The following sections describe the connection of wires, strands, and cables to electrical connectors.

3.5 Soldering on Wires

This is the traditional soldering process using a soldering iron and solder wire. The pre-tinned stranded wire is inserted into the solder pot or inserted through the soldering eye and soldered by adding solder wire. Soldered connections of stranded conductors must also be fitted with a bend protection sleeve (heat shrink tubing), as otherwise individual strands may break off behind the solder joint when the stranded conductor is bent. Shield connections should be made with copper foil and filler wire.

In addition to soldering, wires can also be welded, screwed, or crimped on.

3.6 Welding on Wires

Welding wires—whether by resistance welding or ultrasonic welding—is a complex process, but one that can be automated. Welding is always used when the contact resistance of a crimp connection is either too unstable (e.g. in the case of an ABS -- antilock brake system - sensor that is exposed to high vibration) or too high (e.g. in the case of stranded conductors that are above 25 mm² in high-current applications).

3.7 **Screwing on Wires**

Screwing on wires is not only used in installation technology. More and more terminal strips for electronic circuit boards are being used—both as one-piece terminal strips and in two-piece versions, each with soldered pins. With regard to the screw, it is important to ensure that the clamping point does not damage the stranded conductor (i.e. no screws are directly placed on the stranded conductor) or that ferrules are used.

A simpler way to terminate wires is to use cage clamps. Depending on the design and crosssection, there are cage clamps for direct contacting (simply insert the wire) or, for larger crosssections, with locking and unlocking levers.

Crimping on Wires 3.8

Crimping contacts to wires is certainly the most widely used connection technique. The wire is inserted into a stripper crimper and a contact (preferably with a wire crimp and insulation crimp) is applied directly to the end of the wire. The bundle of crimped contacts is then snapped into the correct positions of the connector housing manually or with the help of color recognition of the wire insulation with an automated machine. If the contact does not have an insulation crimp, a bent protection sleeve (heat-shrink tubing) must also be applied here!

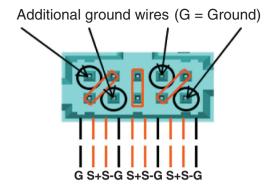
Wire cross-section (mm² or AWG), crimp contact, and tool setting must be matched to each other.

As crimping is a type of cold welding of the individual wires of a stranded conductor, the crimp machine must be monitored regularly by checking the height and width of the crimp and by measuring the pull-off forces.

Crimping involves cold welding of the stranded wires, which is why tin bronze is preferable as contact material. Brass creates microcracks during crimping, which can lead to corrosion in the long term.

Solid wires cannot be processed in crimp contacts as there is no cold welding!

TIP



Expert contribution 5 titled "Component Design for Automated Wire Harness Production" in this book provides detailed information on this technology.

IDC Technology 3.9

With an insulation displacement connection, several wires—preferably from a flat ribbon cable are connected to a connector at the same time. The wire cross-section and contact fork must be precisely matched. The impact strength of the wire insulation also has a significant effect on the quality of the insulation displacement technology.

Shielded ribbon cables are expensive and difficult to process, which is why round cables are offered that have twisted wire pairs inside. A simpler solution is to use additional ground wires in the ribbon cable, which allows acceptable shielding to be achieved over short distances (Figure 3.1):

Figure 3.1 In this arrangement, the differential pairs of a ribbon cable with 1 mm pitch have 105 Ω impedance!