TrelleborgVibracoustic (Hrsg.)

Schwingungstechnik im Automobil

TrelleborgVibracoustic (Hrsg.)

Schwingungstechnik im Automobil

Grundlagen, Werkstoffe, Konstruktion, Berechnung und Anwendungen

Vogel Business Media

Wir freuen uns auf Ihre weiteren Anregungen zu den Inhalten dieses Fachbuches unter der E-Mail-Adresse nvh@tbvc.com

ISBN 978-3-8343-3357-5

1. Auflage, 2015

Alle Rechte, auch das der Übersetzung, vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Genehmigung des Verlages reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden. Hiervon sind die in §§ 53, 54 UrhG ausdrücklich genannten Ausnahmefälle nicht berührt.

Printed in Germany

Copyright 2015 by Vogel Business Media GmbH & Co. KG, Würzburg

Lektorat: Siegfried Binder

Umschlaggestaltung: 3st kommunikation GmbH, Mainz

Vorwort

Eine Fülle von Systemen und Komponenten sorgt in modernen Automobilen für sicheres und entspanntes Fahren. Gerade die Schwingungstechnik leistet hierzu einen entscheidenden Beitrag, hilft sie doch, störende Geräusche und Vibrationen, die durch den Antrieb oder Straßenunebenheiten entstehen, zu isolieren und zu dämpfen. Als weltweit führender Zulieferer für automobile Schwingungstechnik kennen wir die Herausforderungen, die dies an Entwickler und Konstrukteure von Kraftfahrzeugen stellt. Daher hat ein Team von Experten bei TrelleborgVibracoustic ein praxisnahes Kompendium für alle erarbeitet, die sich mit dieser Thematik befassen.

Wir freuen uns, Ihnen mit dem Fachbuch "Schwingungstechnik im Automobil" das Ergebnis dieser Arbeit präsentieren zu können. Unser Ziel war es, eine Vielzahl von schwingungstechnischen Fragen rund um das Automobil zu beantworten – grundlegende wie aktuelle. Welchen Einfluss haben Leichtbau, neue Antriebe und erhöhte Anforderungen an die Umweltfreundlichkeit auf das Schwingungsverhalten eines Fahrzeugs? Welche Vorteile hat der Werkstoff Gummi und bei welchen Anwendungen sind Polyurethane besser geeignet? Wie ist ein Bauteil auszulegen, um im Gesamtsystem zu bestehen? Welche intelligenten schwingungstechnischen Lösungen erfüllen die Forderung nach steigendem Komfort zu geringeren Kosten?

Im ersten Teil des Werkes werden die Grundlagen der Isolation, Dämpfung und Tilgung von Schwingungen im Automobil erklärt: Angefangen von der Materialentwicklung, über Entwicklungs-, Konstruktions- und Produktionsverfahren bis hin zur Lebensdauerprüfung. Der zweite Teil behandelt die Anwendungsfelder in der Antriebs- und Fahrwerktechnik für Personenkraftwagen und Nutzfahrzeuge.

Wir danken allen Autoren, ihren Mitarbeiterinnen und Mitarbeitern sowie unseren Entwicklungspartnern und Kunden, die mit ihrer Expertise und zahlreichen Anregungen an diesem Buch mitgewirkt haben.

Ihnen, liebe Leserinnen und Leser, wünschen wir eine fachlich anregende und nutzbringende Lektüre.

Darmstadt, im November 2014

TrelleborgVibracoustic Geschäftsführung VI

Inhaltsverzeichnis

Teil 1 Grundlagen

1.	Schwi	ngungstee	chnik für die Automobilindustrie	1			
1.1	Grund	lagen und Anforderungen der Schwingungstechnik					
1.2	Schwir	ngungstechnik im Automobilbau					
2.	Schwi	ngungsiso	lation, Dämpfung und Tilgung	5			
2.1	Ein We	erkstoff w	ird berechenbar	5			
2.2	Die Gr	undlagen	der Schwingungsisolation	6			
2.3	Vierpoltheorie: Eine Beschreibung zur Isolation hoher Frequenzen						
	2.3.1	Mechan	ische Impedanzen	9			
	2.3.2	Mechan	ische Vierpole	10			
	2.3.3	Kopplur	ng von Vierpolen	12			
	2.3.4	Isolatior	nsberechnung mit Vierpolen	14			
		2.3.4.1	Durchgangsdämmung	14			
		2.3.4.2	Durchgangsdämmung der Schnelle	14			
		2.3.4.3	Durchgangsdämmung der Kraft	15			
		2.3.4.4	Einfügungsdämmung	15			
		2.3.4.5	Beispiel: Dämpfer-Stützlager in einer				
			Pkw-Radaufhängung	16			
2.4	Einflus	Einfluss von Dämpfung und Reibung auf die Isolation 1					
	2.4.1	Einführu	ung	18			
	2.4.2	Zum Ein	fluss der geschwindigkeitsproportionalen Dämpfung .	20			
	2.4.3	Zum Ein	fluss der Reibung	22			
2.5	Die Scl	nwingung	stilgung	27			
3.	Werks	toffe der	Schwingungstechnik	29			
3.1	Einfüh	rung		29			
3.2	Elasto	mer – ein	außergewöhnlicher Werkstoff	29			
	3.2.1	Energie	-Elastizität	29			
	3.2.2	Entropie	e-Elastizität	30			
3.3	Grundpolymer bzw. Kautschuk 3						
	3.3.1	Einführu	ung	30			
	3.3.2	Naturka	utschuk und Synthesekautschuk	30			
3.4	Überb	lick über t	ypische Materialeigenschaften	32			
	3.4.1	Einführu	ung	32			
		3.4.1.1	NR – Naturkautschuk	32			
		3.4.1.2	IR – Polyisopren-Kautschuk	33			
		3.4.1.3	BR – Butadien-Kautschuk	33			
		3.4.1.4	SBR – Styrol-Butadien-Kautschuk	33			
		3.4.1.5	CR – Chloropren-Kautschuk	34			
		3.4.1.6	NBR – Nitril-Kautschuk	34			
		3.4.1.7	HNBR – Hydrierter Nitril-Kautschuk	34			
		3.4.1.8	IIR – Butyl-Kautschuk	35			
		3.4.1.9	EPDM – Ethylen-Propylen-Dien-Kautschuk	35			

		3.4.1.10 ACM – Acrylat-Kautschuk	35
		3.4.1.11 AEM – Ethylen- Acrylat-Kautschuk	36
		3.4.1.12 FKM – Fluor-Kautschuk	36
		3.4.1.13 ECO – Epichlorhydrin-Kautschuk	36
		3.4.1.14 VMQ – Silikon-Kautschuk	37
		3.4.1.15 AU und EU – Polyester- und	
		Polyether-Urethan-Kautschuk	37
3.5	Naturk	kautschuk – Entdeckung, Geschichte, Eigenschaften,	
	Verwe	ndung	37
	3.5.1	Einführung	37
	3.5.2	Herstellungsverfahren und Eigenschaften des	
		Rohkautschuks	41
	3.5.3	TSR – technisch spezifizierter Kautschuk	44
	3.5.4	Synthetischer "Naturkautschuk"	47
	3.5.5	NR-Mischungen und Vulkanisate – typische Eigenschaften	48
	3.5.6	Festigkeit - Verstärkung – Selbstverstärkung	49
	3.5.7	Hitzebeständigkeit – Alterung	50
	3.5.8	Kälteeigenschaften	50
	3.5.9	Anwendungsgebiete	51
	3.5.10	Zukunftsaussichten	52
3.6	Gumm	imischung und Vernetzungsreaktion	53
	3.6.1	Mischungsbestandteile	55
		3.6.1.1 Einführung	55
		3.6.1.2 Vernetzungssystem	56
		3.6.1.3 Sonderfall Thermoplastische Elastomere (TPE)	56
		3.6.1.4 Füllstoffe	57
		3.6.1.5 Weichmacher	57
		3.6.1.6 Alterungsschutzmittel	57
		3.6.1.7 Verarbeitungshilfsmittel und Additive	58
		3.6.1.8 Herstellung der Rohmischung	58
		3 6 1 9 Prüfung und Freigabe	59
		3.6.1.10 Vulkameterprüfung	60
37	Forma	ebung und Vulkanisation	62
5.7	371	Compression Moulding	63
	372	Transfer Moulding	63
	373	Injection Moulding	64
	374	Gummi-Metall-Haftung	64
3 8	Flastor	mere für Schwingungstechnik – eine Übersicht	65
5.0	3 8 1	Alterungsbeständigkeit	67
	3.0.1	Kältebeständigkeit	67
	3 8 3	Grenzen der Einsatztemperatur	69
3 0	Bautoi	larunnen – maßgeschneiderte Werkstoffe	69
5.5	201	Workstoffe für Eshnworktaile	60
	202	Materialian für Enderelemente und	09
	J.J.Z	Materialien für Feuereienente unu Karosseriabalter – Einsatzgebiete für MCU	77
	202	Markstoffa für Aggragatalagerung Materon und	12
	5.9.5	Gotriobologor	77
		2021 Workstoffoigenschaften	72
		S.S.S.I Werkstoneigenschaften	73

		3.9.3.2	Shore-Härte	75
		3.9.3.3	Werkstoffe für Motorlagerung	76
	3.9.4	Werksto	ffe für Torsionsschwingungsdämpfer	78
	3.9.5	Werksto	ffe für Kupplungen und entkoppelnde	
		Riemens	cheiben	81
	3.9.6	Werksto	ffe für Tilger	83
	3.9.7	Werksto	ffe für Luftfedern	83
	3.9.8	Zukunft	der Elastomere in der Schwingungstechnik	85
3.10	Verbin	dunastech	nik	85
	3.10.1	Substrat	e für Elastomer-Verbund-Teile	85
		3.10.1.1	Metalle	85
		3.10.1.2	Kunststoffe	86
		3 10 1 3	Metalle und Kunststoffe	87
	3 10 2	Flastome	ere für den Verbund Gummi/Metall	88
	3 10 3	Vorbeha	ndlung der Substrate	88
	5.10.5	3 10 3 1	Reinigungsverfahren	89
		3 10 3 2	Strahlbehandlung	Q1
		3 10 3 3	Phosphatierungs-Verfahren für Stahlteile	92
		3 10 3 /	Konversions-Verfahren für Aluminium	07
	2 10 /	Dindomi	ttol für Elactomor Vorbundtaila	00
	5.10.4		Historische Entwicklung von Bindomitteln	99
		2 10 4 2	Bygikalisch chamischa Grundlagen der Pindung	100
		5.10.4.2 5.10.4.2	Physikalisch-chemische Grundlagen der bindung	100
		2 10 4 4	Zukönftige Trends hei Bindemitteln	102
	2 10 F	5.10.4.4		103
	5.10.5			103
		3.10.5.1 2.10 E 2	Zusammensetzung von Bindemittel	103
		3.10.5.2	Versänge bei der Mildemitter	104
		3.10.5.3	Vorgange bei der vulkanisation	104
	2 10 6	3.10.5.4	Vernetzungsreaktionen in Bindesystemen	104
	3.10.6	Auttrag		107
		3.10.6.1	Auftragsverfahren	107
		3.10.6.2	Messung der Schichtdicke von Bindemitteln	110
	3.10.7	Prutung	der Bindung	113
		3.10.7.1	Bindungsprufung an Fertigteilen	113
		3.10.7.2	Bindungsprüfung an Prüfkörpern	113
		3.10.7.3		114
	3.10.8	Bruchbil	der von Gummi-Verbundteilen	114
		3.10.8.1	Typische Bruch- und Ausfallbilder	114
		3.10.8.2	Mögliche Fehlerquellen	116
		3.10.8.3	Schadensanalyse	116
4.	Vom Sv	/stemvers	tändnis zum besseren Bauteil	117
4.1	Von de	r Systemb	eschreibung zur Bauteilspezifikation	117
4.2	Von de	r Spezifik	ation zum Bauteilkonzept	118
4.3	Die Ba	uteilkonst	ruktion	124
	4.3.1	Die Trag	körpergestaltung mit Hilfe der	
		Finite-El	emente-Methode	124
	4.3.2	Lebensd	auervorhersage und Tragkörperoptimierung	125

	4.3.3	Gewichtsreduktion durch automatische Konturoptimierung	128
5.	Bautei	lfertigung	131
5.1	Der "S	ingle-Loop"-Entwicklungsansatz	131
5.2	Von de	er Bauteilzeichnung zum Musterbau	133
	5.2.1	Unterschiedliche Anforderungen von Bauteil- und	
		Werkzeugkonstruktion	133
	5.2.2	Füllbildsimulation	134
	5.2.3	Das erste Muster	134
	5.2.4	Der Fertigungsprozess	135
	5.2.5	Fertigungsparameter	135
6.	Prüfun	gen in Zeiten von "Single Loop"	137
6.1	Betrie	osfestigkeitsprüfung – Historie und Motivation	137
6.2	Betrie	osfestigkeit von Elastomerlagern	138
6.3	Virtue	lle Lebensdauerprüfung	139
6.4	Statisti	ische Grundlagen	145
6.5	Prüfze	itverkürzung durch Omission	150
6.6	Bewer	tung des Temperatureinflusses	156
6.7	Fazit .		157

Teil 2 Anwendungsfelder

7.	Aggreg	jatelager		159	
7.1	Aggregatelagersysteme				
	7.1.1	Ziele dei	r Systemauslegung	159	
	7.1.2	Lagerun	gskonzepte	160	
		7.1.2.1	Grundprinzip der Funktionstrennung	160	
		7.1.2.2	Front-Querantrieb	160	
		7.1.2.3	Vierpunktlagerung	161	
		7.1.2.4	Pendellagerung	163	
	7.1.3	Standard	dantrieb	165	
		7.1.3.1	Dreipunktlagerung	165	
		7.1.3.2	Vierpunktlagerung	166	
	7.1.4	Werkzeu	ige zur Auslegung von		
		Aggrega	telagerungssystemen	166	
		7.1.4.1	Modellierung mit Mehrkörpersystemen	166	
		7.1.4.2	Fahrzeugversuch	174	
	7.1.5	Hinweise	e zur praktischen Auslegung von		
		Lagerun	gssystemen	178	
		7.1.5.1	Auslegung der Statik	178	
		7.1.5.2	Auslegung der Eigenfrequenzen	179	
		7.1.5.3	Auslegung des Leerlaufes	180	
		7.1.5.4	Auslegung transienter Vorgänge	181	
7.2	Grundl	agen der	Aggregatelager	182	
	7.2.1	Definitio	on	182	

	7.2.2	Aufgabe	n der Aggregatelager	183
	7.2.3	Elastome	erfedern	185
	7.2.4	Metall- ເ	Ind Kunststoffteile für Aggregatelager	189
	7.2.5	Flüssigke	eiten für Aggregatelager	192
7.3	Elastor	nere für A	ggregatelager	192
	7.3.1	Anforde	rungen an Elastomere und verwendete Arten	192
		7.3.1.1	Anforderungen	192
		7.3.1.2	Kautschukarten für Elastomere und ihre	
			Eigenschaften	194
	7.3.2	Dämpfu	ng und dynamische Verhärtung	196
	7.3.3	Setzen u	nd Hochtemperaturverhalten	197
7.4	Elastor	nerlager	· · · · · · · · · · · · · · · · · · ·	198
	7.4.1	Drucklad	ler	198
	,	7411	Rundlager	198
		7412	Rechtecklager	200
	742	Ruchsen		200
	7.7.2	7 4 2 1	Innenringbuchse (IR-Buchse)	201
		7427	Außen und innen gebundene	201
		7.7.2.2	rotationssymmetrische Buchse	201
		7423	Buchsen als abgestimmte Lagerelemente	202
	743	Symmetr	rische Schräglager (Dach- oder Keillager)	202
	7//	Zusamm	angesetztes lager	205
	7.4.4	Pondolst	ützen	200
	7.4.5	Gummi/	Metall-Sonderbauformen	200
75	7.4.0 Zielkor	oflikte von		211
7.5	Hydrau	ilisch däm	nfende Motor- und Getriebelager	212
7.0	761	Finführu		214
	7.0.1	Einfluss	des Membransniels auf die Dämpfung bei	217
	7.0.2	Entkopp	elung durch eine lose Membrane	221
	763	Ontimio	ung der Akustik	221
	7.0.5	Somi ont	konnolnde Dücen Membransysteme	222
	7.0.4	Kovitotic		225
	7.0.5	Lagorboi		224
	7.0.0			227
		7.0.0.1		227
		7.0.0.2	Drenmomente abstutzendes Anschlag-Hydrolager .	231
		7.0.0.3		233
		7.6.6.4	Kastenläger	234
		7.6.6.5	Modernisiertes und Kostenreduziertes	226
		7000		230
	t to select a la	7.6.6.6	Hangende Motorbetestigung (Hanglager)	237
1.1	Hydrob	Juchsen .		240
٥. /	Luftge	campite L	ager	243
	7.8.1	EINTUHRU	ing	243
	7.8.2	Theorie	der Luttdamptung (praktischer Ansatz)	245
	7.8.3	Vergleich	n zwischen Luftdampfung und hydraulischer	
		Dämptui	ng	246
	7.8.4	Paramet	erstudie	248
		7.8.4.1	Variation des pneumatischen Durchmessers	249

		7.8.4.2	Variation des eingeschlossenen Luftvolumens	249
		7.8.4.3	Variation der Anregungsamplituden	251
		7.8.4.4	Variation des Düsendurchmessers	251
	7.8.5	Schaltba	re Lager	253
7.9	Schalth	are Moto	rlager	253
	7.9.1	Elektrisc	h schaltbare Motorlager	253
	7.9.2	Pneuma	tisch schaltbare Hydrolager	256
	7.9.3	Schaltba	re Lager mit automatischer	
		Membra	nspielverstellung	260
7.10	Aktive	Schwingu	ingstechnik (Active Vibration Control)	262
	7.10.1	Einführu	ing	262
	7.10.2	Geschich	ite	263
	7.10.3	AVC-Svst	temoptionen	264
		7.10.3.1	Open-Loop-Steuerung	265
		7 10 3 2	Closed-Loop-Kontrolle	265
	7 10 4			266
	7.10.4	7 10 4 1	Der Aktor (Ontionen)	266
		7 10 4 2	Der elektrodynamische Aktor	267
		7.10.4.2	Die elektronische Steuereinheit	207
		7.10.4.5	(Electronic Control Unit, ECU)	268
		7 10 / /	Der Fehler" Sensor	200
	7 10 F	7.10.4.4 Falletudi		200
	7.10.5	Auchlick		209
7 1 1	7.10.0 Anturo	AUSDIICK	arktene-ificeho Anfordorungon	270
7.11	7 1 1 1	Europetion	narktspezifische Amorderungen	2/1
	7.11.1	FUNKLION	isverbesserungen und Köstenreduktionen bei	
		Aggrega		771
	7 1 1 2	Paukast		2/1
	7.11.2		Moiter entwickelter Deukesten aug einfachen	2/4
		7.11.2.1	weiter entwickeiter Baukasten aus einfachen	774
	7 4 4 2	C l l S	und ungewonnlichen Losungen	274
	7.11.3	Sonderio	osungen, zugeschnitten auf spezielle	200
		Fanrzeu		280
		7.11.3.1	Hydrolager mit eingebautem Tilger	280
		7.11.3.2	Hydrolager/hydraulisches Schaltlager mit	
			Doppelisolator	281
		/.11.3.3	Hydrolager mit automatischem, hydraulischem	
				282
		7.11.3.4	Hydrolager mit Silikon-Tragfeder und lokaler	
			Silikon-Schutzkappe	285
	7.11.4	Innovati	on aktive Lager	287
7.12	Zusami	menfassur	ng	290
7.13	Leitsät	ze zur Koi	nzeption von Aggregatelagern	291
8.	Fahrwe	erklager		293
8.1	Fahrko	mfort ode	er Fahrsicherheit	293
	8.1.1	Das spor	tliche Fahrwerk	293
	8.1.2	Die Defi	nition des Fahrkomforts	294
	8.1.3	Die Defi	nition der Fahrsicherheit	294

8.2	Gummi	i/Metall-Te	eile im Fahrwerk	296
	8.2.1	Gummi/N	Metall-Teile ermöglichen den Radfederhub	296
	8.2.2	Gummi/N	Metall-Elemente ermöglichen wartungsfreie	
		Achsen .		298
	8.2.3	Gummi/N	Aetall-Teile steuern die Kinematik der Radführung	299
	8.2.4	Gummi/N	Metall-Lager unterstützen anspruchsvolle	
		Spezifika	tionen	300
	8.2.5	Gummi/N	Metall-Lager absorbieren Stöße	302
	8.2.6	Gummi/N	Metall-Elemente isolieren Schwingungen	304
9.	Nutzfa	hrzeuglag	er	309
9.1	Motorl	ager		309
	9.1.1	Konstruk	tion	309
		9.1.1.1	Systeme	309
		9.1.1.2	Befestigung	310
		9113	Anschläge	310
		9114	Kennungen	311
		9115	Bauraum	311
		9116	Trackörper	311
	912	Matorial		317
	5.1.2	9121	Flastomere	312
		9127	Trägerwerkstoffe	312
		0122	Zusammenfassung	212
92	Fabrwe	s. I.Z.S		212
5.2	9 2 1	Fabrworl	ke mit Blattfederung (VA / HA)	313
	0.2.1	Eabrworl	ke mit Luftfodorung	215
03	J.Z.Z Kabino	nlagor		217
9.5		Eabrorba	uudagar	217
	9.5.1	Funktion	usiager	217 210
	9.5.Z	Tachnical	Anforderungen für die Deuteilentwicklung	210
	9.5.5	Deuteiler	ne Amorderungen für die Bautellentwicklung	210
	9.5.4	Bautenau	usiegung	210
0.4	9.3.5	Lebensoa	auer und Funktionalität	319
9.4	Sonder	lager		319
	9.4.1	Batteriek	casteniager	319
		9.4.1.1	Lasten und Antorderungen	319
		9.4.1.2	Bauteilausiegung	320
		9.4.1.3	Bauteilformen	320
	9.4.2	Schaltka	stenentkopplung	321
10.	Luftfed	lern		323
10.1	Die An	wendung	von Luftfedern in der Fahrzeugtechnik	323
	10.1.1	Anwend	ungsfelder	323
	10.1.2	Vergleich	n verschiedener Federungssysteme für Pkw	324
		10.1.2.1	Prinzip Luftfedersystem	324
		10.1.2.2	Prinzip Niveauausgleich mit Zusatzluftfeder	325
		10.1.2.3	Prinzip hydropneumatisches System	325
		10.1.2.4	Prinzip Nivomat	326
		10.1.2.5	Prinzip Verstellfahrwerk	327

		10.1.2.6 Prinzip Active Body Control (ABC)	327
		10.1.2.7 Prinzip Active Electromagnetic Body Control	328
	10.1.3	Vorteile von Luftfedersystemen	328
	10.1.4	Der Aufbau eines Luftfedersystems im Fahrzeug	329
	10.1.5	Luftversorgungsanlage	330
		10.1.5.1 Einführung	330
		10.1.5.2 Steuergeräte für Luftfedersysteme	331
	10.1.6	Geforderte Eigenschaften für Pkw-Luftfedern	332
10.2	Funktio	on und physikalische Grundlagen von Luftfedern	334
	10.2.1	Das Gaspolster als Feder	334
	10.2.2	Die Funktion des Luftfederbalges	335
	10.2.3	Kraft und Federrate als Zielgrößen der Auslegung	337
	10.2.4	Wie lässt sich die Kennlinie der Luftfeder beeinflussen?	338
10.3	Aufbau	u und Eigenschaften von Luftfederbälgen	340
	10.3.1	Faltenbälge Typ 1B und 2B	340
	10.3.2	Faltenbälge Typ 1A	341
	10.3.3	Rollbälge	342
	10.3.4	Schlauchrollbälge und deren Anbindung	
		(Stecksitz, Bördeln, Verklemmung)	343
	10.3.5	Die Fadenlage: Axial- und Kreuzlagenbälge im Vergleich	344
	10.3.6	Balgeigenschaften und ihre Auswirkung im Fahrzeug	346
10.4	Aufbau	u und Konstruktion von Luftfedern	347
	10.4.1	Federbein oder freistehende Luftfeder	347
	10.4.2	Besondere Anforderungen und Ausführungen	349
	10.4.3	Anwendungsbeispiel Pkw	351
	10.4.4	Anwendungsbeispiel Nutzfahrzeug	353
	10.4.5	Anwendungsbeispiel Schienenfahrzeug	353
10.5	Herste	llung von Luftfedern	355
	10.5.1	Aufbauelemente des Luftfederbalges	355
	10.5.2	Halbfabrikate – Gummi, Gewebe	355
	10.5.3	Wulsteinlagen	355
10.6	Festigk	xeitsträger	356
	10.6.1	Nylonkordgewebe	356
	10.6.2	Die Merkmale nach der Gewebespezifikation	356
	10.6.3	Die Fadenkonstruktion	356
	10.6.4	Auswahl der Fadenkonstruktion	357
	10.6.5	Aufbau der Balgwand	357
	10.6.6	Konstruktive Auslegung	358
10.7	Antwo	rten auf marktspezifische Anforderungen	358
11.	Torsior	nsschwingungsdämpfer	361
11.1	Kurbel	trieb	361
	11.1.1	Einführung	361
	11.1.2	Rückblick	362
	11.1.3	Bauarten von Gummi-Torsionsschwingungsdämpfern	363
		11.1.3.1 Einführung	363
		11.1.3.2 Eingepresste Torsionsschwingungsdämpfer	364
		11.1.3.3 Vulkanisierte Torsionsschwingungsdämpfer	365

	11.1.4	Auslegung von Torsionsschwingungsdämpfern	366
		11.1.4.1 Einführung	366
		11.1.4.2 Berechnungsmodell Mehrkörpersimulation	367
		11.1.4.3 Lösung des Differentialgleichungssystems	368
		11.1.4.4 Validierung des Berechnungsmodells	371
		11.1.4.5 Bewertung der Ergebnisse	372
	11.1.5	Ausblick	373
11.2	Entkop	pelte Riemenscheiben für Nebenaggregate	375
	11.2.1	Einführung	375
	11.2.2	Aufbau der entkoppelten Riemenscheibe	377
	11.2.3	Auslegung von entkoppelten Riemenscheiben	377
		11.2.3.1 Drehschwingungssystem Riementrieb	377
		11.2.3.2 Auslegungskriterien	379
		11.2.3.3 Validierung des Berechnungsmodells	381
	11.2.4	Ausblick	382
12.	Tilger.		385
12.1	Lineart	ilger	385
	12.1.1	Funktionsweise und Anwendungsgebiete von Lineartilgern	385
		12.1.1.1 Getriebetilger	386
		12.1.1.2 Lenkradtilger / Airbagtilger	387
		12.1.1.3 Chassis-Tilger / Cabriotilger	387
		12.1.1.4 Aktive Tilger	388
		12.1.1.5 Hydrotilger	389
	12.1.2	Prinzipien zur Auslegung von Lineartilgern	390
		12.1.2.1 Federsteifigkeit	391
		12.1.2.2 Dämpfung	391
		12.1.2.3 Gewicht der Schwungmasse	391
		12.1.2.4 Resonanzfrequenz	393
	12.1.3	Design und Aufbau von Lineartilgern	395
	12.1.4	Antworten auf marktspezifische Anforderungen	397
12.2	Rotatio	nstilger	397
	12.2.1	Funktionsweise und Anwendungsgebiete von	
		Rotationstilgern	397
	12.2.2	Prinzipien der Auslegung von Rotationstilgern	398
	12.2.3	Design und Aufbau von Rotationstilgern	399
	12 2 4	Antworten auf marktspezifische Anforderungen	400
12 3	Kompo	nenten zur Lagerung. Zentrierung und	100
12.5	Momer	ntenübertragung von Antriebswellen	401
	12 3 1	Funktionsweise und Anwendungsgehiete	401
	12.3.2	Prinzipien der Auslegung	401
13.	Polyure	ethane (PUR) als Feder- und	
	Dämpfi	ungswerkstoffe – Grundlagen	407
13.1	Einführ	ung	407
13.2	Chemis	che Grundlagen	408
	13.2.1	lsocyanate	408
	13.2.2	Polyole	410

	13.2.2.1 Polyether	410
	13.2.2.2 Polyester	411
13.3	Katalysatoren	411
13.4	Vergleich	412
13.5	MCU-Elastomere im automobilen Einsatz	412
14.	Mikrozelluläres Polyurethan (MCU)	413
14.1	Grundsätze von MCU-Anwendungen	413
14.2	Entwicklungsbeispiele für automobile Komponenten	416
14.3	Vorhersage des Bauteilverhaltens mittels FEM	
	(Finite-Elemente-Methode)	419
	14.3.1 Poisson-Koeffizient	419
	14.3.2 Analyse durch Polynom-Anpassung	419
14.4	Befestigungen für Karosserie und Radaufhängung	422
14.5	Anwendungsbeispiele für MCU	423
	14.5.1 Geräuschdämmung	423
	14.5.2 Stoßübertragbarkeit	425
	14.5.3 Gewichtseinsparung	426
14.6	Zusammenfassung	426

Anhang

Kapitel- und Autorenverzeichnis	427
Abkürzungen	428
Literatur	430
Literaturnachweise	430
Weitere Literatur	432
Bildquellen	433
Sachverzeichnis	434

Teil 1 Grundlagen

1. Schwingungstechnik für die Automobilindustrie

1.1 Grundlagen und Anforderungen der Schwingungstechnik

Weniger Kraftstoffverbrauch bei besseren Fahrleistungen, mehr Komfort und Fahrsicherheit ohne Mehrkosten: Diese mehrfache Herausforderung hält die Automobilindustrie seit Jahren in Bewegung. Die Kunden verlangen preiswerte und sparsame und trotzdem fahraktive und komfortable Autos, während die gesetzlichen Emissionsvorgaben immer strenger werden. Für die Automobilhersteller gilt es, gleich mehrere konkurrierende Ziele gleichzeitig zu erreichen. Sie müssen energieeffiziente, komfortable, sichere und dynamische Autos zu wettbewerbsfähigen Kosten produzieren. Die Industrie unterstützt sie dabei weltweit mit schwingungstechnischen Lösungen. Neben technischen Anforderungen wie Leichtbau, Downsizing, Downspeeding, Start-Stopp, Zylinderabschaltung und alternativen Antrieben ist es auch der steigende Kostendruck, dem sich die Schwingungstechniker stellen müssen. Leichtere Fahrzeugstrukturen erfordern spezielle Lösungen, beispielsweise indem vorhandene Massen in schwingungstechnische Bauteile integriert werden. Das Downsizing von Motoren, Downspeeding, Start-Stopp und Zylinderabschaltung reduzieren Gewicht und Verbrauch, erfordern jedoch optimierte Motorlagerungskonzepte, Getriebe oder Anlasser – mitunter sogar weitere Maßnahmen wie Ausgleichswellen, Zweimassenschwungräder oder elektronisch geregelte Schwingungstechnik.

Alternative Antriebe verlangen zusätzliche Schritte zur Isolation hochfrequenter Antriebsgeräusche des Elektromotors oder störender Vibrationen und Geräusche eines Range-Extenders. Der Kunde einer Oberklasselimousine möchte keinen Unterschied zwischen einem Vier- und Sechszylindermotor in Komfort- und Geräuschentwicklung wahrnehmen. Jenseits technischer Entwicklungen gilt es auch für die Schwingungstechnik, dass Marktänderungen die Schwingungstechnik vor neue Herausforderungen in der Entwicklung und Produktion stellen. Künftig wird das Volumenwachstum stärker getrieben durch Fahrzeuge des A- oder B-Segments. Und diese kleineren Autos werden vermehrt nicht mehr in Europa gebaut. Die Entwicklung innovativer Bauteile für diesen Markt verlangt einen konsequenten "Designto-Cost"-Ansatz und ein fundiertes Verständnis für die Anforderungen und Bedürfnisse in neuen und wachstumsstarken Märkten, z. B. in Asien. Der Ausbau der regionalen Entwicklungskapazitäten wird deshalb in Zukunft noch wichtiger werden.

1.2 Schwingungstechnik im Automobilbau

Wenn von Fahrkomfort die Rede ist, meint jeder zu wissen, um was es geht. Ihn zu beschreiben, ist jedoch ein sehr komplexes Unterfangen. Dieses Werk soll deshalb auch Grundlagenarbeit liefern, um die im Zusammenhang mit Schwingungstechnik immer wieder auftretenden Begriffe besser zuordnen zu können. Moderne Personenkraftwagen bieten hohe Fahrsicherheit in Verbindung mit ausgezeichnetem Fahrkomfort. Bewusst wird uns das im Alltag kaum noch – zu sehr haben wir uns daran gewöhnt. Man muss 25 Jahre zurückgehen und ein Fahrzeug der damaligen Zeit "neu erleben", um den Entwicklungsfortschritt der letzten Jahre, die Summe aus stetigen kleinen Verbesserungen, zu beurteilen. Dann nämlich treffen wir die alten "Bekannten", die Unarten der damaligen Fahrzeuge, wieder. Nach dem Starten meldet sich der Motor mit Leerlaufzittern, beim Anfahren stören Anfahr- und Lastwechselruckeln, lästige impulsartige Schwingungen, die damals mit dem Begriff "Bonanza-Effekt" bezeichnet wurden.

All diese sogenannten "NVH"-Phänomene sind heute weitgehend gelöst. Die englische Abkürzung "NVH" beschreibt die Gesamtheit aller auftretenden Störungen und ihre subjektive Wahrnehmung durch die Fahrzeuginsassen. Schwingungen und Geräusche werden dabei nach ihrer Frequenz, Herkunft und Störwirkung in die Kategorien Noise, Vibration und Harshness eingeteilt, Bild 1-1. Unerwünschte Schwingungen und Geräusche entstehen in erster Linie durch den Verbrennungsmotor und werden über die Motorlager als Körperschall und Luftschall in den Innenraum übertragen. Aber auch das Fahrwerk überträgt Fahrbahnunebenheiten über Gummi/Metall-Komponenten als elastokinematische Verbindungselemente an die Fahrzeuginsassen. Sie werden als Vibration an Lenkrad, Sitzschiene oder Bodenblech, bzw. in Form störender Geräusche, bemerkbar.

Bild 1-1. Zusammenhang zwischen der Schwingungsfrequenz und der subjektiven Wahrnehmung als Vibration, Rauigkeit und Geräusch.

Die Bandbreite der unangenehmen Auswirkungen reicht bei Geräuschen von Verständigungsschwierigkeiten über Beeinträchtigungen beim Musikhören bis hin zu Schwindel und Gehörschäden. Bei stärkeren und lang anhaltenden Schwingungen sind Störungen des Tastempfindens, Schwindel und Unsicherheit bis hin zu Sehstörungen und in extremen Fällen – z. B. bei längeren Arbeiten mit Baumaschinen – sogar Zellschädigungen nachgewiesen.

Vibrationen, die als fühlbare Schwingungen unangenehm wahrgenommen werden, entstehen im Karosserieaufbau und übertragen sich nur durch Körperschall, sind also lediglich fühlbar, aber kaum hörbar. Auf schlechtem Straßenbelag nervt das Motorstuckern, eine periodische Hubschwingung der Motormasse. Sie verursacht ein ständiges Zittern des Vorderwagens, das fälschlicherweise oft einer schlecht abgestimmten "stuckerigen" Vorderachse zugeschrieben wurde. Problematisch für die subjektive Wahrnehmung ist es, wenn Schwingungen und Vibrationen sowohl fühlbar als auch hörbar sind. Derartige Störgrößen sollten daher unbedingt vermieden werden. Ein Beispiel dafür sind hohe Motordrehzahlen. Sie können zu Dröhngeräuschen führen, die bei einer Frequenz zwischen 80 und 100 Hz als sehr unangenehm empfunden werden.

Diesen Übergangsbereich von Vibrationen zu hörbaren Schwingungen oder Geräuschen bezeichnet man mit "Harshness" oder Rauigkeit. Er umfasst den Frequenzbereich zwischen 15 und 100 Hz. Derartige Störgrößen entstehen durch Fahrbahneinflüsse und Drehschwingungen des Verbrennungsmotors. Im unteren Bereich wird die Wahrnehmung noch durch die fühlbaren Anteile dominiert, ab ca. 100 Hz bestimmen jedoch die hörbaren Anteile die Störwirkung.

Hörbare Schwingungen in einem Frequenzbereich ab 100 Hz bezeichnet man als "Noise". Beispiele hierfür sind Abrollgeräusche der Reifen oder das hochfrequente Surren einer Elektromaschine, das an das Geräusch einer Straßenbahn erinnert.

Um den Geräuschkomfort zu erhöhen, reicht jedoch eine alleinige Fokussierung auf den *Noise*-Bereich nicht aus. Vielmehr muss ein ausgedehnter Bereich, der das gesamte *Harshness*-Band umfasst, betrachtet werden, um alle signifikanten Störungen erfassen und durch gezielte Maßnahmen beseitigen zu können.

Entwicklungsingenieure und Fahrzeugakustiker haben diese Schwingungsprobleme in den letzten Jahren weitgehend gelöst, und der Werkstoff Gummi spielt hierbei noch immer eine tragende Rolle. Fahrzeugakustiker verbesserten die Innendämmung, elektronische Fahrwerke mit Luftfedern erlauben höchsten Fahrkomfort ohne Einbußen bei Dynamik oder Sicherheit, Bild 1-2. Entwicklungsingenieure optimierten die Motoren und deren Aufhängung. Leerlaufzittern oder ein nagelnder Dieselmotor gehören heute der Vergangenheit an. Akustisch ist der Diesel- von einem Benzinmotor kaum noch zu unterscheiden.

Bild 1-2. Sitzschienenbeschleunigung im Leerlauf bei Fahrzeugen verschiedener Epochen.

2. Schwingungsisolation, Dämpfung und Tilgung

2.1 Ein Werkstoff wird berechenbar

"Gummi ist unberechenbar, er ändert von Charge zu Charge seine Eigenschaften, ist schwarz, klebrig und riecht unangenehm." Mit diesem Vorurteil ließ sich über 40 Jahre lang in der Gummibranche alles erklären, sowohl positive als auch negative Projektergebnisse. Voraussagen fielen schwer, vieles ließ sich nicht präzise erläutern, und so war es hoffnungslos, die Eigenschaften eines Gummilagers, zum Beispiel das Isolationspotenzial, verlässlich zu berechnen und seine Lebensdauertüchtigkeit vorauszusagen.

Gute konstruktive Lösungen waren den erfahrenen "alten Hasen" vorbehalten, die mit Berufserfahrung, Empirie und Beharrlichkeit ihre Projekte zum Erfolg führten. Die physikalische Wirkung des Werkstoffes Gummi bezüglich der Schwingungsisolation ließ sich oft nur anhand von diffusen Beobachtungen erläutern. Begriffe wie Isolation und Dämpfung wurden oft nicht sauber getrennt. Diese Unsicherheit führte zu der Annahme, ein großes Gummivolumen fördere die Isolationswirkung. So schafften Fahrzeugkonstrukteure oft mit Mühen den Platz für großkalibrige Lagerelemente.

Ein Motorlager des Volkswagen Golf aus dem Jahr 1985 (Bild 2-1) liefert ein Beispiel: ein großer Abstand zwischen der inneren Metallhülse, dem Kern, und dem äußeren Stahlring schwächt die Vibrationen auf ihrem Weg durch den Tragkörper. Das war die Vorstellung, oder jedenfalls der Wunsch. Schmale Verbindungsstege zwischen dem Hauptvolumen und dem Außenmetall und eine große freie Gummioberfläche sollten die Bilanz zwischen eingeleiteter Schwingenergie und dem an die Fahrzeugkarosserie abgegebenen Betrag verbessern.

Bild 2-1. Motorlager eines Volkswagen Golf II, Baujahr 1985.

Heute wissen wir mit Sicherheit: Diese Vorstellungen von der Physik der Isolation waren falsch. Gummi isoliert Schwingungen und Geräusche nicht auf geheimnisvolle Weise, sondern ist ein normaler Werkstoff, der präzisen physikalischen Gesetzen folgt. Zugegeben, diese Gesetze sind komplex und es war ein langer Weg, bis das Materialverhalten dieses Werkstoffs verstanden werden konnte und damit mathematisch beschreibbar wurde. Heute können wir den Begriff Isolation erläutern und in einem frühen Projektstadium durch Simulationsrechnungen mit guter Genauigkeit vorhersagen.

2.2 Die Grundlagen der Schwingungsisolation

Jedes Gummilager verhält sich im eingebauten Zustand wie eine Feder. Eine Feder allein isoliert aber nicht. Mit einem einfachen Bild lässt sich das erläutern. Auf einem Fundament steht eine Feder, die am freien Ende durch eine Kraft belastet wird. Die Last spannt den Federkörper, der diese ohne Verstärkung oder Abschwächung auf das Fundament überträgt. Dabei ist die Federrate, ob weich oder hart, nicht von Belang. Es ist auch nicht von Bedeutung, ob die Last schleichend oder schnell ihre Größe ändert. Der oben eingeleitete Betrag wird unten auf den Boden übertragen. Eine Feder isoliert also nicht, sie verzögert bestenfalls die Kraftübertragung.

Für die Entstehung einer Schwingung ist ein dynamisches System, ein Verbund aus Feder und Masse erforderlich. Bei einer Motoraufhängung ist die Zuordnung schnell klar: Der Motor bringt die Masse mit, die Lager, völlig gleichgültig ob drei, vier oder fünf, liefern die elastischen Federn. Es entsteht ein Feder/Masse-System. Im Fahrwerksbereich sind die Zuordnungen wesentlich unübersichtlicher. Massen können der Radträger, Radführungslenker, der Hilfsrahmen oder das Hinterachsgetriebe sein.

Ein schwingungsfähiges System bedarf nur einer Anregung, damit es mit unterschiedlichen Schwingwegen (Amplituden) oder Geschwindigkeiten (Frequenzen) schwingt. Physiker haben dieses Schwingungsphänomen bereits vor über 100 Jahren mathematisch präzise beschrieben. Die Lösung wird in Form des Übertragungsverhaltens dargestellt, Bild 2-2. Dazu folgende Erläuterung: Eine harmonische Kraft mit wechselnder Lastrichtung greift an der Masse an. Erst zieht sie die Masse nach oben, dann drückt sie diese nach unten. Die Feder wird dabei wechselweise gedehnt oder gestaucht. Das Produkt aus Federweg und Federsteifigkeit ergibt die Reaktionskraft in der Feder, die auf das Fundament übertragen wird. Ist diese eingeleitete Kraft kleiner als die anregende Kraft, isoliert das System; ist sie größer, wird die Schwingung verstärkt. Um es nochmals zu verdeutlichen: Ein schwingfähiges System kann auch ohne zusätzliche Dämpfungsglieder eine dämpfende Wirkung ausüben. Ebenso gut kann aber auch die entgegengesetzte Wirkung eintreten.

Bild 2-2. Übertragungsverhalten eines schwingfähigen Systems.

Welcher der beiden Fälle eintritt, hängt von der Geschwindigkeit ab, mit der die Kraft die Wirkrichtung wechselt. Geschieht das nämlich sehr schnell, kann die Masse aufgrund ihrer Trägheit diesem Richtungswechsel nicht folgen. Sie reagiert zu träge, also zu langsam, und schwingt nur noch mit kaum wahrnehmbaren Wegamplituden. Mit der Federrate multipliziert, führen diese kleinen Schwingwege zu sehr kleinen Kräften, die in das Fundament, das ist zum Beispiel die Karosseriestruktur eines Fahrzeugs, eingeleitet werden. Hält die anregende Kraft zwar ihre Größe konstant, reduziert aber in kleinen Schritten die Geschwindigkeit ihrer Richtungswechsel, nimmt die Größe der Schwingwege zu. Mit der gleichen Federrate multipliziert, wächst die Reaktionskraft in der Feder. Diese kann sogar, wenn die Anregung den Takt des Schwingungssystems, die so genannte Eigenfrequenz, trifft, um ein Vielfaches größer werden als die anregende Kraft. Das Feder/Masse-System isoliert die Anregungskraft nicht mehr, es verstärkt sie. Um diese Darstellung am Beispiel Automobil zu veranschaulichen: Die Kräfte, die mit wechselnder Geschwindigkeit ihre Wirkrichtung ändern, können Verbrennungskräfte eines laufenden Motors sein, deren Freguenz von der Motordrehzahl abhängt. Diese eher anschauliche Darstellung zeigt Bild 2-3 mathematisch korrekt. Die waagerechte Achse bildet die Schwingfrequenz ab, die senkrechte Achse vom Nullpunkt nach oben eine Anregungsverstärkung, vom Nullpunkt nach unten eine Anregungsabschwächung. Das Beispiel zeigt ein Feder/Masse-System (es soll exemplarisch für eine einfache Motorlagerung stehen), das bei der Masse des Motors durch Auswahl der passenden Federsteifigkeit auf eine Eigenfrequenz von 10 Hz abgestimmt ist.

Bild 2-3. Doppelfederrate verursacht 6 dB Verlust der Isolation.

Je nach Bauform des Motors (Anzahl und Anordnung der Zylinder) und Betriebsdrehzahl regt der Motor im Betrieb in einem breiten Fenster unterschiedliche Frequenzen an. Ein Einzylinder-Viertakt-Motor erzeugt bei einer Leerlaufdrehzahl von 600 min⁻¹ 5 Impulse/s, ein Vierzylinder-Reihenmotor bei gleicher Drehzahl 20 Impulse/s.

Geht man in diesem Rechenmodell von gleichen Motormassen aus, liefert ein und dieselbe Feder, also das gleiche Motorlager, im ersten Fall 5 dB Verstärkung und im zweiten Fall 10 dB Isolation. Schlimmer noch: bei stetig steigender Motordrehzahl vergrößert der Vierzylinder die Isolation und wirkt zunehmend komfortabler, bei dem Einzylinder aber steigt die Hauptanregung und trifft schließlich auf die Eigenfrequenz. Das führt in unserem Beispiel bei 1200 min⁻¹ zu einer Resonanzkatastrophe, ehe bei 1700 min⁻¹ schließlich der Bereich der Isolation erreicht wird.

In einem zweiten Beispiel sollen zwei unterschiedlich schwere Motoren gleicher Bauart auf identischen Federn gelagert werden. Masse und elastische Aufhängung führen bei Motor 1 zum Beispiel zu einer Eigenfrequenz von 15 Hz. Bei dem zweiten Motor mit der halben Masse rutscht dieser Wert auf 21 Hz. Bei einer Leerlaufdrehzahl von 600 min⁻¹ liegt die erste Motoraufhängung gerade an der Grenze der Isolation, bei dem leichteren Motor würde dieselbe Lagerung, also die identischen Lagerelemente, untragbares Leerlaufzittern verursachen. Die tatsächlichen Verhältnisse in einem Pkw liegen komplizierter als mit diesen einfachen Gedankenmodellen erläutert.

Ein Motor kann sich in seiner elastischen Lagerung in die drei Raumrichtungen bewegen und mit Nicken, Wanken und Gieren um drei Achsen drehen. Er liefert nicht nur eine Eigenfrequenz, wie hier der Einfachheit halber dargestellt, sondern sechs unterschiedliche Frequenzen mit völlig verschiedenen, untereinander gekoppelten Schwingungsformen. Die Federn stehen nicht auf festem Fundament, sondern auf elastischen Karosseriestrukturen. Somit wird eine Schwingamplitude des Motors nicht unbedingt zum Federweg des Gummilagers. Der Federweg des Lagerfußpunktes muss je nach Anregungsfrequenz und Phasenlage mit dem passenden Vorzeichen berücksichtigt werden.

Ähnlich unübersichtlich ist die Tatsache, dass ein Gummilager in seiner Anwendung nicht mit "dem Federwert" reagiert. Lagereigenschaften werden in Simulationsrechnungen nicht einem einzigen skalaren Wert, sondern mit sechs Messgrößen beschrieben. Neben den drei translatorischen Werten müssen die bei Fahrwerksbuchsen wichtigen rotatorischen Werte, die Torsions- und Kardaniksteifigkeiten, berücksichtigt werden. Die messtechnische Ermittlung dieser Größen erfordert einen beträchtlichen Aufwand an Prüfmaschinen und Adaptionen, stellt aber auch die zentrale Herausforderung dar: Nur in wenigen Ausnahmefällen liefern Messungen lineare Kraft/Weg-Kennungen. Typischerweise verlaufen Messkurven gekrümmt. Sie liefern unterschiedliche Federwerte in Abhängigkeit der Vorlast, der Prüfgeschwindigkeit, der Prüfamplitude und der Belastungshistorie. Ein Gummitragkörper liefert nach mehreren Lastzyklen andere Federwerte als vor der Konditionierung. Von Bedeutung kann auch sein, dass ein Tragkörper unter Vorlasten in einer Richtung mit unterschiedlichen Eigenschaften in den anderen Richtungen reagiert. So kann ein Lager in Fahrtrichtung steifer werden, wenn es das Gewicht eines Motors trägt oder sein Drehmoment bei verschiedenen Drehzahlen oder Getriebeübersetzungen abstützen muss. Eine radiale Vorlast bei einer Fahrwerksbuchse kann die Federeigenschaften in Torsions- und Kardanikrichtung beeinflussen.

Präzise Prüfvorschriften, bis ins Detail spezifiziert, bilden die Voraussetzung für eine systematische Bauteilentwicklung und für vergleichende Messungen beim Lieferanten und beim Kunden. Die Prüfspezifikation beantwortet jedoch eine komplizierte Frage nicht: "Liefert dieses Bauteil an seinem Einbauort im Fahrzeug perfekte Ergebnisse bezüglich Fahrsicherheit, Komfort und Haltbarkeit?"

Diese Antwort ist schwierig und kann bei vielen Projekten nicht sicher gegeben werden. Das vorliegende Buch soll helfen, zur Lösung dieser Problematik beizutragen.

2.3 Vierpoltheorie: Eine Beschreibung zur Isolation hoher Frequenzen

In diesem Abschnitt werden die theoretischen Grundlagen hergeleitet, die zur Betrachtung der Körperschallübertragung bzw. Isolationswirkung benötigt werden. Mechanische Impedanzen und Vierpole können das dynamische Verhalten von Bauteilen oder Schnittstellen beschreiben. Daraus lässt sich eine Reihe von Dämmungsgrößen ableiten, die bei der Analyse und Bewertung von Konstruktionen hilfreich sind. Im nachfolgenden Abschnitt werden mechanische Impedanzen erläutert. Statt dieser Impedanzen können auch dynamische Massen bzw. Scheinmassen oder Eingangssteifigkeiten betrachtet werden – die Größen lassen sich ineinander umrechnen. Eine umfassende Beschreibung der Theorie mit Beispielen findet sich in *Sell* [2-1].

2.3.1 Mechanische Impedanzen

Als mechanische Impedanz wird der Widerstand eines linear elastischen Körpers definiert, den er einer äußeren Erregung entgegensetzt. Die Impedanz ist das Verhältnis der erregenden Kraft \underline{F} zur Schnelle \underline{v} :

$$\underline{Z} = \frac{\underline{F}}{\underline{V}}.$$
Gl. (2-1)

Werden an einem Verbindungspunkt zwei Körper (z.B. Massen) mit derselben Schnelle bewegt, so wirkt die Summe der Impedanzen gegen die angreifende Kraft:

$$\underline{Z}_{ges} = \underline{Z}_1 + \underline{Z}_2.$$
 Gl. (2-2)

Wirkt dieselbe Kraft durch zwei Körper (z.B. Federn) hindurch, so errechnet sich die wirksame Impedanz aus:

$$\frac{1}{\underline{Z}_{ges}} = \frac{1}{\underline{Z}_1} + \frac{1}{\underline{Z}_2} \,.$$
 Gl. (2-3)

Oftmals werden statt der Impedanz andere Verhältnisgrößen betrachtet, die sich im Frequenzbereich alle einfach ineinander umrechnen lassen. So werden zur Impedanzbestimmung meist Kraft und Beschleunigung <u>a</u> gemessen. Die gesuchte Impedanz ergibt sich dann mit der Kreisfrequenz ω aus:

$$\underline{Z} = \frac{\underline{F}}{\underline{v}} = \frac{\underline{F}}{\underline{a}} j\omega.$$
 Gl. (2-4)

Diese Formel ist sehr hilfreich, wenn mittels eines Impulshammers oder per Shakeranregung die Eingangsimpedanz einer Struktur experimentell bestimmt werden soll. Als Ergänzung sind in Tabelle 2-1 Formeln zur Impedanzberechnung von idealisierten Bauteilen aufgeführt.

Tabelle 2-1. Impedanzen idealisierter Bauteile.

Bauteil	Impedanz	Formelzeichen
Masse	$\underline{Z}_{m} = j\omega m$	<i>m</i> : Masse
Feder	$\underline{Z}_{k} = \frac{k}{\omega m}$	k : Federkonstante
Viskoser Dämpfer	$\underline{Z}_{c} = c$	c : Dämpferkonstante

Aus den Formeln zur Impedanzberechnung wird deutlich, dass es sich bei der Impedanz um eine frequenzabhängige Größe handelt. Zur besseren Vorstellung sind im Bild 2-4 die charakteristischen Verläufe von Impedanzen und dynamischen Massen gezeigt. Die in Klammern gezeigten Werte geben die Proportionalitätsfaktoren an – also wie stark der Wert von der Frequenz abhängt.

Bild 2-4. Charakteristische Verläufe. a) Impedanzen; b) dynamische Massen.

2.3.2 Mechanische Vierpole

Mechanische Vierpole wurden in der Mitte des letzten Jahrhunderts von den häufig genutzten elektrischen Vierpolen abgeleitet. Es handelt sich um eine kompakte Formu-

lierung, mit der Verknüpfungen von mechanischen Bauteilen auf einfache Weise dargestellt werden können. Es werden immer zwei Eingangsgrößen und zwei Ausgangsgrößen betrachtet. Die Paare bestehen jeweils aus einer Kraftgröße und einer Weg-, Geschwindigkeits- oder Beschleunigungsgröße. Der Index 1 kennzeichnet Eingangsgrößen, der Index 2 Ausgangsgrößen und der Index 12 oder 21 Transfergrößen. In den nachfolgenden Darstellungen wird – wie schon bei den Impedanzen – mit Geschwindigkeiten gearbeitet.

Bild 2-5. Mechanische Vierpole in Kettenform (links) und Impedanzform (rechts).

Wie wir noch sehen werden, ist die sogenannte Kettenform besonders für die Berechnung von Reihenschaltungen geeignet. Für den im Bild 2-5 gezeigten Vierpol gilt in Matrixschreibweise:

$$\begin{bmatrix} \underline{F}_1 \\ \underline{V}_1 \end{bmatrix} = \begin{bmatrix} \underline{a}_{11} & \underline{a}_{12} \\ \underline{a}_{21} & \underline{a}_{22} \end{bmatrix} \cdot \begin{bmatrix} \underline{F}_2 \\ \underline{V}_2 \end{bmatrix} = \begin{bmatrix} \underline{A} \\ \underline{M} \end{bmatrix} \cdot \begin{bmatrix} \underline{F}_2 \\ \underline{V}_2 \end{bmatrix} (Kettenform), \qquad Gl. (2-5)$$

$$\begin{bmatrix} \underline{F}_1 \\ \underline{F}_2 \end{bmatrix} = \begin{bmatrix} \underline{Z}_{11} & \underline{Z}_{12} \\ \underline{Z}_{21} & \underline{Z}_{22} \end{bmatrix} \cdot \begin{bmatrix} \underline{V}_1 \\ \underline{V}_2 \end{bmatrix} = \begin{bmatrix} \underline{Z} \end{bmatrix} \cdot \begin{bmatrix} \underline{V}_1 \\ \underline{V}_2 \end{bmatrix} (Impedanzform).$$
Gl. (2-6)

Tabelle 2-2 enthält die Vierpolparameter in Kettenform für einige idealisierte Bauteile bzw. Baugruppen.

Bauteil	Impedanz	Formelzeichen
Masse	$\begin{bmatrix} \underline{\mathbf{A}} \end{bmatrix} = \begin{bmatrix} 1 & j\omega m \\ 0 & 1 \end{bmatrix}$	m : Masse
Feder	$\left[\underline{\underline{A}}\right] = \begin{bmatrix} 1 & 0\\ \frac{j\omega}{k} & 1 \end{bmatrix}$	<i>k</i> : Federkonstante
Viskoser Dämpfer	$\begin{bmatrix} \underline{A} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \frac{1}{c} & 1 \end{bmatrix}$	c : Dämpferkonstante
Schwinger (Aufbau s.u.)	$\left[\underline{\underline{A}}\right] = \begin{bmatrix} 1 & j\omega m \\ \\ \frac{1}{c + \frac{k}{j\omega}} & \frac{j\omega m + c + \frac{k}{j\omega}}{c + \frac{k}{j\omega}} \end{bmatrix}$	

Tabelle 2-2. Vierpolparameter idealisierter Bauteile

Tabelle 2-2. (Fortsetzung).

Bauteil	Impedanz	Formelzeichen
Tilger (Aufbau s.u.)	$\left[\underline{\underline{A}}\right] = \begin{bmatrix} 1 & \frac{j\omega m}{j\omega m + c + \frac{k}{j\omega}} \\ & \frac{1}{c + \frac{k}{j\omega}} \\ 0 & 1 \end{bmatrix}$	

Der mechanische Aufbau des Schwingers und des Tilgers ist in den folgenden beiden Darstellungen zu erkennen, Bilder 2-6 und 2-7.

Bild 2-6. Vierpol-Darstellung eines Schwingers.

Bild 2-7. Vierpol-Darstellung eines Tilgers.

2.3.3 Kopplung von Vierpolen

Ein großer Vorteil der Vierpol-Modellierung ist, dass sich ein Netzwerk aus mechanischen Bauteilen mathematisch leicht berechnen lässt. Um die Kopplungen im Netzwerk zu berücksichtigen, kann jedes Teilsystem durch einen Vierpol beschrieben werden. Anschlie-Bend werden diese mathematisch zu einem Gesamt-Vierpol zusammengefaßt. Auf diese Weise ist es möglich, komplizierte Netzwerke aufzubauen. Die Wirksamkeit von Tilgern oder anderen Strukturen, deren Berechnung sich mit Differentialgleichungen schwieriger gestalten würde, kann auf diese Weise einfach berechnet werden. Bei der Parallelschaltung müssen alle zusammengeschalteten Bauelemente mit der gleichen Schwinggeschwindigkeit beaufschlagt werden. Befinden sich *n* Teilsysteme in Reihe hintereinander, müssen die dazugehörigen Vierpole in Kettenform dargestellt werden, da die Ausgangsgrößen des ersten Vierpols gleich den Eingangsgrößen des folgenden Vierpols sind. Die Teilsysteme sind demselben Kraftfluss ausgesetzt, und die Gesamt-Kettenmatrix <u>A</u>ges berechnet sich zu

$$\underline{\underline{A}}_{ges} = \prod_{i=1}^{n} \underline{\underline{A}}^{i}.$$
 Gl. (2-7)

Sind die Eingangsgrößen mehrerer Teilsysteme starr miteinander verbunden, so dass sie die identische Geschwindigkeit besitzen und die Gesamtkraft ein- und ausgangsseitig gleich der Summe der Einzelkräfte ist (parallele Anordnung), so berechnet sich die Gesamt-Impedanzmatrix \underline{Z}_{nes} zu

$$\underline{\underline{Z}}_{ges} = \sum_{i=1}^{n} \underline{\underline{Z}}^{i}.$$
 GI. (2-8)

Molloy [2-2] hat einen Gleichungssatz entwickelt, mit dem n Vierpole in Kettenform parallel geschaltet werden können. Damit braucht nicht zwischen Kettenform und Impedanzform gewechselt zu werden.

$$\underline{A}_{\text{ges}} = \begin{bmatrix} \underline{a}_{11}^{\text{ges}} = \frac{A}{B} & \underline{a}_{12}^{\text{ges}} = \frac{AC}{B} - B \\ \underline{a}_{21}^{\text{ges}} = \frac{1}{B} & \underline{a}_{22}^{\text{ges}} = \frac{C}{B} \end{bmatrix}$$
GI. (2-9)

mit $A = \sum_{i=1}^{n} \left(\frac{\underline{a}_{11}^{i}}{\underline{a}_{21}^{i}} \right), \quad B = \sum_{i=1}^{n} \left(\frac{1}{\underline{a}_{21}^{i}} \right), \quad C = \sum_{i=1}^{n} \left(\frac{\underline{a}_{22}^{i}}{\underline{a}_{21}^{i}} \right).$

Bild 2-8 zeigt zwei Vierpole \underline{A}^1 und $\underline{\underline{A}}^2$, die über die Kraft $\underline{\underline{F}}_2$ und die Schnelle $\underline{\underline{V}}_2$ miteinander gekoppelt sind.

Bild 2-8. Serienschaltung von zwei mechanischen Vierpolen.

Beide Vierpole liegen in Kettenform vor und können somit nach Gl. (2-7) zu einer Gesamtkettenmatrix \underline{A}_{more} zusammengefasst werden

$$\begin{bmatrix} \underline{F}_{1} \\ \underline{P}_{2} \end{bmatrix} = \begin{bmatrix} \underline{a}_{11}^{\text{ges}} & \underline{a}_{12}^{\text{ges}} \\ \underline{a}_{21}^{\text{ges}} & \underline{a}_{22}^{\text{ges}} \end{bmatrix} \cdot \begin{bmatrix} \underline{F}_{3} \\ \underline{P}_{3} \end{bmatrix}.$$
 GI. (2-10)

Für die Gesamtkettenmatrix in expliziter Form ergibt sich

$$\underline{A}_{\underline{=}ges} = \begin{bmatrix} \underline{a}_{11}^{ges} & \underline{a}_{12}^{ges} \\ \underline{a}_{21}^{ges} & \underline{a}_{22}^{ges} \end{bmatrix} = \begin{bmatrix} \underline{a}_{11}^{e} \underline{a}_{12}^{2} + \underline{a}_{12}^{e} \underline{a}_{21}^{2} & \underline{a}_{11}^{e} \underline{a}_{12}^{2} + \underline{a}_{12}^{e} \underline{a}_{22}^{2} \\ \underline{a}_{11}^{e} \underline{a}_{11}^{2} + \underline{a}_{12}^{e} \underline{a}_{21}^{2} \\ \underline{a}_{21}^{e} \underline{a}_{21}^{2} + \underline{a}_{21}^{e} \underline{a}_{21}^{2} \\ \underline{a}_{21}^{e} \underline{a}_{21}^{e} + \underline{a}_{22}^{e} \underline{a}_{21}^{e} \\ \underline{a}_{21}^{e} \underline{a}_{21}^{e} + \underline{a}_{22}^{e} \underline{a}_{21}^{e} \\ \underline{a}_{21}^{e} \underline{a}_{21}^{e} + \underline{a}_{22}^{e} \underline{a}_{21}^{e} \\ \underline{a}_{21}^{e} \underline{a}_{21}^{e} + \underline{a}_{21}^{e} \underline{a}_{22}^{e} \end{bmatrix}.$$
Gl. (2-11)

2.3.4 Isolationsberechnung mit Vierpolen

Die vorgestellte Modellierung mit mechanischen Vierpolen ist besonders geeignet, um Isolationswirkungen (= Dämmungswirkungen) zu berechnen.

Generell ist es vorteilhaft, Maßnahmen zur Körperschallminderung möglichst nah an der Schallquelle zu treffen. Die Maßnahmen können entweder dazu dienen, dass die Quelle weniger Schallenergie abgibt, oder sie bewirken eine Reflexion der Schallenergie zur Quelle mit dem Ziel, bei mehrmaligem Durchlauf von schallabsorbierenden Konstruktionselementen die Dämpfung zu erhöhen. Als Konstruktionselemente, deren Einfügung eine Körperschallminderung bewirkt, kommen schwere Massen und weiche Federn mit und ohne Bedämpfung sowie Kombinationen daraus in Betracht. Zur Quantifizierung der Dämmwirkung einzelner Elemente werden vorwiegend zwei Dämmungsgrößen eingesetzt. Die *Durchgangsdämmung* setzt Kraft bzw. Geschwindigkeit vor und hinter einem Isolationselement ins Verhältnis. Die *Einfügungsdämmung* beschreibt die Wirkung von Isolationselementen wesentlich zweckmäßiger. Es werden Kraft und Geschwindigkeit auf der Empfängerseite einer Struktur mit Isolationsmaßnahme gegenüber dem Ausgangszustand betrachtet. Somit zeigt sich auch der Einfluss der geänderten Isolationsmaßnahme auf die Dynamik des Gesamtsystems.

2.3.4.1 Durchgangsdämmung

Die folgenden Gleichungen für Dämmungsgrößen lassen sich aus der Grundgleichung für mechanische Vierpole gewinnen:

Bei der Durchgangsdämmung müssen zwei Fälle unterschieden werden.

2.3.4.2 Durchgangsdämmung der Schnelle

Aus Gl. (2-13) ergibt sich mit der Abschlussimpedanz

$$\underline{Z}_{ab} := \frac{\underline{F}_2}{\underline{V}_2}$$
 GI. (2-14)

die Durchgangsdämmung der Schnelle

$$\underline{D}_{dv} := \frac{\underline{V}_1}{\underline{V}_2} = \underline{a}_{22} + \underline{a}_{21}\underline{Z}_{ab}.$$
 Gl. (2-15)

Oft wird die Dämmung als Pegelgröße angegeben

$$\Delta L_{dv} := 20 \lg \left| \frac{\underline{V}_1}{\underline{V}_2} \right| dB.$$
Gl. (2-16)

Bei der Beschreibung der Dämmungseigenschaften mit der Durchgangsdämmung wird nicht berücksichtigt, dass durch Einfügen eines Dämmelementes die Schnelle \underline{v}_1 unter Umständen wesentlich größer wird als bei der unelastischen Lagerung. Dadurch werden oft zu günstige, vom Messaufbau abhängige Werte berechnet oder gemessen. Da die Durchgangsdämmung jedoch sehr einfach mess- und berechenbar ist, wird sie trotzdem oft zur Beurteilung verwendet.

2.3.4.3 Durchgangsdämmung der Kraft

Aus Gl. (2-12) ergibt sich mit der Abschlussimpedanz

$$\underline{D}_{dF} := \frac{\underline{F}_1}{\underline{F}_2} = \underline{a}_{11} + \frac{\underline{a}_{12}}{\underline{Z}_{ab}}.$$
 Gl. (2-17)

Für die Darstellung als Pegelgröße gilt

Im Gegensatz zur Durchgangsdämmung der Schnelle ist die Durchgangsdämmung der Kraft nur schwer direkt zu messen, da Messeinrichtungen in den Kraftfluss eingefügt werden müssen. Für die Berechnung der Durchgangsdämmung sind jeweils nur zwei Vierpol-Parameter sowie die Abschlussimpedanz notwendig. Zur Berechnung der Durchgangsdämmung der Schnelle und der Kraft werden jedoch alle Vierpol-Parameter und die Abschlussimpedanz benötigt. Die Quellenimpedanz ist hier nicht von Interesse.

2.3.4.4 Einfügungsdämmung

Beim Einsatz von Körperschall mindernden Maßnahmen sind Pegelwerte vor und hinter einem Isolator weniger von Interesse. Vielmehr ist wichtig, wie viel Körperschall beim Einsatz eines Isolators im Vergleich zur Ausgangssituation auf der Empfängerseite ankommt. Nur so kann beurteilt werden, ob der Einsatz des Isolators vorteilhaft ist. Wird die Schnelle am Ausgang des ursprünglichen Systems mit $\underline{\nu}_2$ und die Schnelle am Ausgang des Systems mit Isolationsmaßnahme mit $\underline{\nu}'_2$ bezeichnet, so gilt für die Einfügungsdämmung

$$\underline{\underline{D}}_{e} := \frac{\underline{F}_{2}}{\underline{F}_{2}} = \frac{\underline{\underline{V}}_{2}}{\underline{\underline{V}}_{2}} = \frac{\underline{\underline{a}}_{22}\underline{Z}_{q} + \underline{\underline{a}}_{21}\underline{Z}_{q}\underline{Z}_{ab} + \underline{\underline{a}}_{12} + \underline{\underline{a}}_{11}\underline{Z}_{ab}}{\underline{\underline{a}}_{22}\underline{Z}_{q} + \underline{\underline{a}}_{21}\underline{Z}_{q}\underline{Z}_{ab} + \underline{\underline{a}}_{12} + \underline{\underline{a}}_{11}\underline{Z}_{ab}}.$$
 GI. (2-19)

In Gl. (2-19) sind die mit einem Strich versehenen Größen die Geschwindigkeit mit Dämmungsmaßnahme bzw. die Vierpol-Parameter des Dämmungselementes. Die ungestrichenen Größen sind die Geschwindigkeit ohne Maßnahme bzw. die Vierpol-Parameter der ursprünglichen Anordnung. Entspricht der Ausgangszustand einem mechanischen Kurzschluss zwischen Quellen- und Abschlussimpedanz, z.B. bei einer unelastischen Maschinenaufstellung, so vereinfacht sich Gl. (2-19) zu

$$\underline{D}_{e} := \frac{\underline{F}_{2}}{\underline{F}_{2}} = \frac{\underline{v}_{2}}{\underline{v}_{2}} = \frac{\underline{a}_{22}\underline{Z}_{q} + \underline{a}_{21}\underline{Z}_{q}\underline{Z}_{ab} + \underline{a}_{12} + \underline{a}_{11}\underline{Z}_{ab}}{\underline{Z}_{q} + \underline{Z}_{ab}}.$$
 GI. (2-20)

Mit \mathbb{Z}_q wird die Eingangsimpedanz der quellenseitigen Struktur, mit \mathbb{Z}_{ab} die der empfängerseitigen Struktur bezeichnet. \mathbb{Z}_q wird auch als Quellenimpedanz, \mathbb{Z}_{ab} auch als Abschlussimpedanz bezeichnet. Ein weiterer Vorteil der Kenngröße Einfügungsdämmung ist, dass die Dämmung der Kraft und die Dämmung der Schnelle sich nicht unterscheiden. Dies liegt daran, dass Kraft und Schnelle am Ausgang durch die Abschlussimpedanz in einem festen Verhältnis zueinander stehen. Für die Berechnung der Einfügungsdämmung ist die Kenntnis des kompletten Vierpols sowie der Quellen- und Abschlussimpedanz notwendig. Messtechnisch ist die Einfügungsdämmung dagegen sehr einfach zu bestimmen, indem nur die Schnellen der Empfängerseite im ursprünglichen und im geänderten Zustand bei gleicher Anregung gemessen und anschließend dividiert werden.

Seidel [2-3] führt die Kehrwerte der Dämmungsgrößen ein. Aus der Einfügungsdämmung wird dann das Einfügungs-Übertragungsverhältnis:

$$\underline{T}_{e} := \frac{1}{\underline{D}_{e}} = \frac{\underline{F}_{2}}{\underline{F}_{2}} = \frac{\underline{V}_{2}}{\underline{V}_{2}}.$$
 GI. (2-21)

Der Vorteil dieser Betrachtungsweise ist, dass die kritischen Stellen mit Dämmungseinbrüchen nun als Peaks im Kurvenverlauf auftreten und so sicher erkannt werden.

2.3.4.5 Beispiel: Dämpfer-Stützlager in einer Pkw-Radaufhängung

Pkw-Fahrwerke besitzen neben Tragfedern auch Dämpfer, die die Bewegungen bei Aufbau- und Radeigenfrequenzen mindern sollen. Dies ist zur Erhöhung der Fahrsicherheit notwendig. Zur Optimierung der Innenraumakustik werden oberhalb des Dämpfers elastische Lager, sogenannte Dämpfer-Stützlager, eingebaut. An einem einfachen Modell soll nun durch Berechnung der Einfügungsdämmung gezeigt werden, wie sich durch diese Maßnahme der in die Karosserie eingeleitete Körperschall verändert, Bild 2-9. Es sei darauf hingewiesen, dass es sich hier um ein stark vereinfachtes Modell handelt. So wird das nichtlineare Dämpferverhalten, insbesondere die akustisch relevante Reibung im Dämpfer, nicht mit abgebildet.

Bild 2-9. Modellierung einer Pkw-Radaufhängung.

Im Bild ist auf der linken Seite das Modell für ein Federbein gezeigt. Parallel zur Tragfeder k_t , die das Fahrzeuggewicht trägt, befinden sich Dämpfer und Dämpfer-Stützlager k_s in Reihe. Der Dämpfer wird durch eine untere Masse m_{du} , einen idealen Dämpfer c und eine obere Masse m_{do} (Kolbenstange) modelliert. Der Gesamt-Vierpol des Federbeins wird einmal mit und einmal ohne Dämpfer-Stützlager berechnet. Die Quellenimpedanz \underline{Z}_q wird aus der Radsteifigkeit k_r und der mitbewegten Radträger- und Radmasse m_m berechnet. Als Abschlussimpedanz \underline{Z}_{ab} wird Plattenverhalten an Stelle der Karosserie angesetzt.

Das Ergebnis der Berechnung ist im Bild 2-10 dargestellt. In der unteren Bildhälfte lässt sich erkennen, dass die akustischen Vorteile ab ca. 30 Hz durch Dämmungseinbrüche im Bereich der Radeigenfrequenz (ca. 14 Hz) ermöglicht werden. Die Körperschallpegel sind in diesem Frequenzbereich mit dem Dämpfer-Stützlager höher als bei starrer Anbindung des Dämpfers. Die Werte der Einfügungsdämmung sind kleiner als 0 dB. Es tritt der ungewünschte Effekt auf, dass durch die weichere Dämpferanbindung weniger Energie im Dämpfer dissipiert wird. Soll das sogenannte Trampeln des Rades verhindert werden, darf das Dämpfer-Stützlager nicht zu weich werden. An diesem stark vereinfachten Modell wird bereits der Zielkonflikt sichtbar, der bei der Konstruktion eines Dämpfer-Stützlagers gelöst werden muss. In der Praxis wird durch Anschläge ein nichtlinearer Steifigkeitsverlauf erzeugt, so dass bei akustisch relevanten kleinen Wegen das Lager sehr weich ist. Bei größeren Wegen, wie z.B. beim Trampeln des Rades, verhärtet sich das Dämpfer-Stützlager, so dass möglichst viel Energie im Dämpfer dissipiert wird. In der oberen Hälfte von Bild 2-10 ist der Phasenverlauf der Einfügungsdämmung dargestellt. Die Phasenlage am Karosserieeingang wird durch das Dämpfer-Stützlager verändert, da der Dämpferstrang mit Stützlager durch dieses dominiert wird. Ohne Stützlager stellt sich der maximal um 90° gedrehte Phasenwinkel des Dämpfers ein.

Bild 2-10. Einfügungsdämmung eines Dämpfer-Stützlagers.

2.4 Einfluss von Dämpfung und Reibung auf die Isolation

2.4.1 Einführung

Der vorangehende Abschn. 2.3 zeigt den Ansatz, die Schwingungsisolation eines Gummilagers anhand eines idealisierten Feder/Masse-Systems zu beschreiben. Die Darstellung geht von idealen Federeigenschaften und starrer Umgebung aus. Die darauf basierende mathematische Beschreibung führt zu der im Bild 2-11 gezeigten Grafik für die Übertragung der Schwingungsanregung. Dieses System verstärkt oder isoliert eine harmonische Anregung in Abhängigkeit von der Feder/Masse-Abstimmung (das Beispiel zeigt eine über Federkennung und Masse abgestimmte Eigenfrequenz bei 10 Hz) und der Frequenzlage der anregenden Wechselkraft. Im Frequenzfenster zwischen 10 und 20 Hz reagiert die Schwingungsübertragung empfindlich auf Schwankungen der Federcharakteristik. Kleine Änderungen entscheiden über Isolation oder Verstärkung, wobei das System sogar in die Nähe der Resonanzanregung gebracht werden kann. Erst höhere Anregungsfrequenzen mit großer Distanz zur Eigenfrequenz, im Beispiel ab 20 Hz, führen zu einer stabilen Isolation mit abfallender Geraden.

In diesem Frequenzbereich ergibt sich mathematisch idealisiert für jede Frequenzverdopplung (Oktave) ein konstanter Zuwachs der Isolation um 12 dB.

Bild 2-11. Übertragungsverhalten eines Feder/Masse-Systems (Isolationszuwachs 12 dB pro Oktave, d.h. jeweils Verdopplung der Frequenz).

Auf der gleichen theoretischen Basis beschreibt dieser vereinfachte mathematische Ansatz die Auswirkung unterschiedlicher Federraten auf das Maß der Isolation. Eine härtere Feder schiebt die Eigenfrequenz zu höheren, eine weichere in die entgegengesetzte Richtung zu niedrigeren Werten. Die Übertragungskurve wird im linken Bereich der Darstellung in X-Richtung gestreckt oder gestaucht, im rechten Bereich des stetigen Isolationszuwachses parallel verschoben, Bild 2-12.

Bild 2-12. Eine härtere Feder erhöht die Eigenfrequenz. Im kritischen Frequenzfenster führt das zu einem dramatischen Isolationsverlust, im überkritischen Bereich ist dieser auf 6 dB reduziert.

Die Darstellung zeigt einen Orientierungspunkt: jede Verdoppelung der Federrate, im gezeigten Beispiel von 5500 N/mm auf 11.000 N/mm, zieht jeweils einen Isolationsverlust von 6 dB nach sich. Die Eigenfrequenz steigt dabei um den Faktor 1,41 (= $\sqrt{2}$). In diesem kritischen Frequenzbereich nahe bei der Eigenfrequenz können die Verluste an Isolation dramatisch höher ausfallen.

getragen, lässt sich die maximale Überhöhung bei Resonanzanregung aus dem Quotienten $1/\tan(\alpha)$ berechnen, wenn mit α der Verlustwinkel bezeichnet ist. Je höher der Verlustwinkel der Gummimischung eingestellt wird, desto geringer fällt im Bereich der Eigenfrequenz die Verstärkung der Anregungsamplitude aus.

Deutlich ausgedrückt: Eine dämpfende Mischung, also eine mit höherem Verlustwinkel, liefert nicht zusätzliche Isolation, sie reduziert aber die Verstärkung der Anregungsamplitude im kritischen Bereich der Eigenfrequenz. Daraus kann sich ein schwingungstechnischer Vorteil ergeben. Höhere Anregungsfrequenzen, damit also hohe Prüfgeschwindigkeiten, führen hingegen zu einer akustischen Verschlechterung. Bei Akustikproblemen über 100 Hz sind Mischungen mit einem Verlustwinkel über 6° kaum geeignet. Zusätzlich zur Federkraft wird nun phasenverschoben eine Dämpferkraft in das Fundament eingebracht. Auch wenn der Betrag des Federweges durch die Dämpfung reduziert wird, überwiegt der Beitrag der zusätzlichen Kraft. Die Isolation nimmt ab. Der Zuwachs von 12 dB/Oktave (Bild 2-13, blaue Linie) bei einem idealen unbedämpften Feder/Masse-System wird bei höheren Verlustwinkeln zunehmend flacher und erreicht im Grenzfall asymptotisch die flache Steigung von 6 dB/Oktave (Bild 2-13, graue Linie). Die blaue Kurve (Dämpfung nahe 0) und die graue Kurve (Dämpfung extrem groß) bilden in der gezeigten Grafik allerdings mathematische Grenzfälle ab. Mit dem Werkstoff Gummi sind diese nicht zu erreichen

Bild 2-13. Gummimischungen mit hohem Verlustwinkel reduzieren die Verstärkung der Anregungsamplituden im kritischen Bereich der Eigenfrequenz, liefern dafür aber weniger Isolation (rot hinterlegte Fläche) im überkritischen Frequenzbereich.

Bedingt durch den Vorteil einer mathematischen Lösung bildet die hier beschriebene Systematik seit etwa 40 Jahren die Grundlage zur Beurteilung von Gummieigenschaften, zur Charakterisierung von Bauteilen und zur Spezifikation neuer Prüfmaschinen.

Dabei kommt die beim ersten Kennenlernen etwas unhandliche logarithmische Darstellung der Diagramme der Lesbarkeit des Inhaltes entgegen. Die interessanten Teilergebnisse, wie die Verstärkung im Bereich der Eigenfrequenz, werden wie unter einer Lupe gespreizt und damit gut lesbar vergrößert. Gleichzeitig können auch die Ergebnisse bei hohen Frequenzen im typischen akustischen Bereich, bei 200 Hz und weit darüber hinaus, durch Stauchen der Frequenzachse im gleichen Diagramm noch abgebildet werden. Da diese Art der Darstellung von niedrig- und hochfrequenten Schwingungen außerdem gut zur menschlichen Wahrnehmung passt, hat sie sich als Standard durchgesetzt.